Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-12T23:50:34.306Z Has data issue: false hasContentIssue false

Digital Materials Design: Computational Methodologies as a Discovery Tool

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

To cope with the dynamic social and market demands for advanced materials, new research strategies have to be developed that go beyond the commonly accepted trial-and-error approaches. To this end, a computational materials design platform, digital materials design (DMD), has been created based on well-established fundamental laws, powerful computing, and computational technology. DMD based on computer simulation may produce data that identify overlooked materials behaviors, which then may lead to new theory to explain them, and further to the design of real experiments to fabricate and test the materials. In this review, an illustration of computational methods used in DMD will be given, followed by applications based on two case studies: (1) the design of chemical additives, and (2) the realization of p-type ZnO. Similarly, many effective and efficient materials designs have been performed in the using DMD for various industrial applications, which further demonstrate that DMD, and computational modeling in general, is an invaluable tool for materials discovery.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Space shuttle Columbia Web site, http://www.nasa.gov/columbia (accessed November 2006).Google Scholar
2World Technology Evaluation Center Reports Online, “Applications of Molecular and Materials Modeling (2002),” http://www.wtec.org/reports.htm (accessed November 2006).Google Scholar
3Zhang, Z., Wu, P., Lu, L. and Shu, C.Appl. Phys. Lett. 88 142902 (2006).CrossRefGoogle Scholar
4Yu, Z.G., Gong, H. and Wu, P.J. Cryst. Growth 287 (2006) p.199.CrossRefGoogle Scholar
5Liu, L., Bai, K.W., Gong, H. and Wu, P.Chem. Mater. 17 (22) (2005) p.5529.CrossRefGoogle Scholar
6Jin, H.M. and Wu, P.Appl. Phys. Lett. 87 181917 (2005).CrossRefGoogle Scholar
7Liu, L., Bai, K.W., Gong, H. and Wu, P.Phys. Rev. B. 72 125204 (2005).CrossRefGoogle Scholar
8Hu, Y., Yang, S.W., Chen, X.T., Lu, D., Wu, P. and Feng, Y.P.Appl. Phys. Lett. 87 123501 (2005).CrossRefGoogle Scholar
9Lin, G.Q., Gong, H. and Wu, P.Phys. Rev. B. 71 085203 (2005).CrossRefGoogle Scholar
10The official Gaussian 03 Web site, http://www.gaussian.com (accessed November 2006).Google Scholar
11Accelrys Materials Studio, http://www.accelrys.com/products/mstudio/; Accelrys Cerius2, http://www.accelrys.com/products/cerius2/ (accessed November 2006).Google Scholar
12VASP(Vienna Ab Initio Simulation Package) Web page, http://cms.mpi.univie.ac.at/vasp (accessed November 2006).Google Scholar
13PWscf (Plane-Wave Self-Consistent Field) Web page, http://www.pwscf.org (accessed November 2006).Google Scholar
14ABINIT Web page, http://www.abinit.org (accessed November 2006).Google Scholar
15CPMD consortium Web page, http://www.cpmd.org (accessed November 2006).Google Scholar
16Bai, K.W. and Wu, P.J. Alloys Compd. 347 (2002) p.156.CrossRefGoogle Scholar
17Pelton, A.D. and Wu, P.J. Non-Cryst. Solids 253 (1999) p.178.CrossRefGoogle Scholar
18Jak, E., Degterov, S., Wu, P., Hayes, P., and Pelton, A.D.Metall. Trans. 28 (1997) p.1011.CrossRefGoogle Scholar
19FactSage home page, http://www.factsage.com (accessed November 2006).Google Scholar
20Thermo-Calc Software Web page, http://www.thermocalc.com (accessed November 2006).Google Scholar
21CHEMKIN overview Web page, http://www.ca.sandia.gov/chemkin (accessed November 2006).Google Scholar
22OOF: Finite Element Analysis of Microstructures home page, http://www.ctcms.nist.gov/oof (accessed November 2006).Google Scholar
23Heng, K.L., Jin, H.M., Li, Y. and Wu, P.J. Mater. Chem. 9 (1999) p.837.CrossRefGoogle Scholar
24Wu, P., Heng, K.L., Yang, S.W., Chen, Y.F., Mohan, R.S. and Lim, P.H.C.Lect. Notes. Artif. Int. 1620 (1999) p.372.Google Scholar
25Mao, P.L., Liu, T.F., Kueh, K. and Wu, P.Comp. Biochem. 28 (2004) p.245.Google Scholar
26Li, C.H., Soh, C.K. and Wu, P.J. Alloys Compd. 372 (2004) p.40.CrossRefGoogle Scholar
27Wu, P. and Heng, K.L.Commun. Chem. Mater. 11 (1999) p.858.CrossRefGoogle Scholar
28Wu, P., Zeng, Y.Z. and Wang, C.M.Biomaterials 25 (2004) p.1123.CrossRefGoogle Scholar
29Li, C.H., Thing, Y.H., Zeng, Y.Z., Wang, C.M. and Wu, P.J. Phys. Chem. Solids 64 (2003) p.2147.Google Scholar
30MATLAB®, MathWorks Web page, http://www.mathworks.com (accessed November 2006).Google Scholar
31Rodgers, J. and Villars, P.MRS Bull. XVIII (2) (1993) p.27.CrossRefGoogle Scholar
32Slater, J.C.Theory of Alloy Phases (American Society for Metals, Cleveland, OH, 1956).Google Scholar
33Zhao, L.R., Chen, K., Yang, Q., Rodgers, J.R. and Chiou, S.H.Surf. Coat. Technol. 200 (2005) p.1595.CrossRefGoogle Scholar
34Schubert, U.Quant. Struct.-Act. Relat. Comb. Sci. 24 (2005) p.5.Google Scholar
35Wei, Q.Y., Peng, X.D., Liu, X.G. and Xie, W.D.Chin. Sci. Bull. 51 (2006) p.1.CrossRefGoogle Scholar
36Meguro, S., Ohnishi, T., Lippmaa, M. and Koinuma, H.Meas. Sci. Technol. 16 (2005) p.309.CrossRefGoogle Scholar
37Evans, J.R.G., Edirisinghe, M.J., Coveney, P.V. and Eames, J., J. Eur. Ceram. Soc. 21 (2001) p. 2291.CrossRefGoogle Scholar
38Morgan, D., Ceder, G. and Curtarolo, S.Meas. Sci. Technol. 16 (2005) p. 296.CrossRefGoogle Scholar
39Wang, M.L., Hu, X.Q., Beratan, D.N. and Yang, W.T.J. Am. Chem. Soc. 128 (2006) p. 3228.CrossRefGoogle Scholar
40Wu, P. and Li, C.H.Calphad 27 (2003) p.201.CrossRefGoogle Scholar
41Zeng, Y.Z., Chua, S.J. and Wu, P.Chem. Mater. 14 (2002) p.2989.CrossRefGoogle Scholar
42Heng, K.L., Chua, S.J. and Wu, P.Chem. Mater. 12 (2000) p.1648.CrossRefGoogle Scholar
43Li, C.H. and Wu, P.Chem. Mater. 14 (2002) p.4833.CrossRefGoogle Scholar
44Li, C.H. and Wu, P.Chem. Mater. 13 (2001) p.4642.CrossRefGoogle Scholar
45Sebisty, J.J. and Palmer, R.H. Proc. 7th Int. Conf. on Hot Dip Galvanizing Interlaken (1964) p.235.Google Scholar
46Wu, P., Jin, H.M. and Li, Y.Chem. Mater. 11 (1999) p.3166.CrossRefGoogle Scholar
47Rice, S.A. and Nachtrieb, N.H.J.Chem. Phys. 31 (1959) p.139.CrossRefGoogle Scholar
48Jin, H.M., Li, Y., Liu, H.L. and Wu, P.Chem. Mater. 12 (2000) p.1879.CrossRefGoogle Scholar
49Wu, P., Jin, H.M. and Liu, H.L.Chem. Mater. 14 (2002) p.832.CrossRefGoogle Scholar
50Zhu, W.H., Jin, H.M., Wu, P, and Liu, H.L.Phys. Rev. B. 70 165419 (2004).CrossRefGoogle Scholar
51Dai, L., Yang, S.W., Chen, X.T., Wu, P. and Tan, V.B.C.Appl. Phys. Lett. 87 032108 (2005).CrossRefGoogle Scholar
52Yang, S.W., Dai, L., Chen, X.T., Wu, P. and Tan, V.B.C.Appl. Phys. Lett. 88 112902 (2006).CrossRefGoogle Scholar
53Zhu, W.H., Jin, H.M., Wu, P. and Liu, H.L.Chem. Mater. 16 (2004) p.5567.CrossRefGoogle Scholar
54Toguri, J.M. and Wang, J.Study on Reactions Induced by Minor Chemical Additions, final report to the Singapore–Ontario Joint Research Program (University of Toronto, Toronto, Canada, February 2002).Google Scholar
55Yu, Z.G., Gong, H. and Wu, P.Chem. Mater. 17 (2005) p.852.CrossRefGoogle Scholar
56Yu, Z.G., Gong, H. and Wu, P.Appl. Phys. Lett. 86 212105 (2005).CrossRefGoogle Scholar
57Yu, Z.G., Gong, H. and Wu, P.Appl. Phys. Lett. 88 132114 (2006).CrossRefGoogle Scholar