Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-13T09:27:06.471Z Has data issue: false hasContentIssue false

Diffusion Mechanisms and Intrinsic Point-Defect Properties in Silicon

Published online by Cambridge University Press:  31 January 2011

Get access

Extract

High-purity silicon used for the growth of single crystals is a material with a high resistivity. Small traces of foreign atoms, which are mainly substitutionally dissolved on lattice sites, make the material highly conductive and therefore suitable for electronic applications. The controlled incorporation of extrinsic point defects in silicon is the main task for the production of electronic devices. Homogeneous doping is generally achieved by adding a controlled amount of the dopant element to the silicon melt. However, the fabrication of electronic devices like diodes, transistors, and complex integrated circuits requires spatially inhomogeneous dopant distributions. Control of the inhomogeneous doping profiles demanded by the considerations outlined in the article by Packan in this issue requires a detailed knowledge of the atomic mechanisms of dopant diffusion in silicon, the properties of intrinsic point defects like vacancies (V) and self-interstitials (I), and the interactions among different point defects.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Fahey, P.M., Griffin, P.B., and Plummer, J.D., Rev. Mod. Phys. 61 (1989) p. 289.CrossRefGoogle Scholar
2.Hu, S.M., Mater. Sci. Eng. R13 (1994) p. 105.Google Scholar
3.Bracht, H., Haller, E.E., and Clark-Phelps, R., Phys. Rev. Lett. 81 (1998) p. 393.CrossRefGoogle Scholar
4.Stolwijk, N.A. and Bracht, H., in Diffusion in Semiconductors and Non-Metallic Solids, Landolt-Börnstein New Series, Vol. III/33, Subvolume A: Diffusion in Semiconductors, edited by Beke, D.L. (Springer-Verlag, Berlin, 1998) and references therein.Google Scholar
5.Corbett, J.W., McDonald, R.S., and Watkins, G.D., J. Phys. Chem. Solids 25 (1964) p. 873.Google Scholar
6.Watkins, G.D., Corbett, J.W., and McDonald, R.S., J. Appl. Phys. 53 (1982) p. 7097.Google Scholar
7.Gösele, U., Frank, W., and Seeger, A., Appl. Phys. 23 (1980) p. 361.CrossRefGoogle Scholar
8.Morehead, F., Stolwijk, N.A., Meyberg, W., and Gösele, U., Appl. Phys. Lett. 42 (1983) p. 690.CrossRefGoogle Scholar
9.Bracht, H., Stolwijk, N.A., and Mehrer, H., Phys. Rev. B 52 (1995) p. 16542.CrossRefGoogle Scholar
10.Stolwijk, N.A., Phys. Rev. B. 42 (1990) p. 5793.CrossRefGoogle Scholar
11.Yoshida, M. and Arai, E., Jpn. J. Appl. Phys. 35 (1996) p. 44.Google Scholar
12.Uematsu, M., J. Appl. Phys. 82 (1997) p. 2228.Google Scholar
13.Fahey, P., Iyer, S.S., and Scilla, G.J., Appl. Phys. Lett. 54 (1989) p. 843.Google Scholar
14.Gossmann, H.-J., Haynes, T.E., Stolk, P.A., Jacobson, D.C., Gilmer, G.H., Poate, J.M., Luftman, H.S., Mogi, T.K., and Thompson, M.O., Appl. Phys. Lett. 71 (1997) p. 3862.Google Scholar
15.Fahey, P., Barbuscia, G., Moslehi, M., and Dutton, R.W., Appl. Phys. Lett. 46 (1985) p. 784.CrossRefGoogle Scholar
16.Cowern, N.E.B., J. Appl. Phys. 64 (1988) p. 4484.Google Scholar
17.Ural, A., Griffin, P.B., and Plummer, J.D., Appl. Phys. Lett. 73 (1998) p. 1706.Google Scholar
18.Giese, A., Bracht, H., Stolwijk, N.A., and Walton, J.T., J. Appl. Phys. 83 (1998) p. 8062.CrossRefGoogle Scholar
19.Giese, A., Bracht, H., Stolwijk, N.A., and Baither, D., Mater. Sci. Eng., B 71 (2000) p. 160.Google Scholar
20.Bracht, H., Proc. Electrochem. Soc. 99–1 (1999) p. 357.Google Scholar
21.Bracht, H., Physica B 273–274 (1999) p. 981.CrossRefGoogle Scholar
22.Shockley, W. and Moll, J.L., Phys. Rev. 119 (1960) p. 1480.CrossRefGoogle Scholar
23.Chik, K.P., Radiat. Eff. 4 (1970) p. 33.CrossRefGoogle Scholar
24.Bracht, H., Defect Diffusion Forum 143–147 (1997) p. 979.CrossRefGoogle Scholar
25.Larsen, A. Nylandsted, Larsen, K. Kyllesbech, Andersen, P.E., and Svensson, B.G., J. Appl. Phys. 73 (1993) p. 691.CrossRefGoogle Scholar
26.Fair, R.B., in Impurity Doping Processes in Silicon, edited by Wang, F. (North Holland, Amsterdam, 1981) p. 315.CrossRefGoogle Scholar
27.Larsen, A. Nylandsted, Kringhoj, P., sen, J., and Shiryaev, S. Yu., J. Appl. Phys. 81 (1997) p. 2173 and references therein.CrossRefGoogle Scholar
28.Watkins, G.D., Troxell, J.R., and Chatterjee, A.P., in Inst. Phys. Conf. Ser. No. 46 (Institute of Physics, New York, 1979) p. 16.Google Scholar
29.Seeger, A. and Chik, K.P., Phys. Status Solidi 29 (1968) p. 455.Google Scholar
30.Stolk, P.A., Gossmann, H.-J., Eaglesham, D.J., Jacobson, D.C., Rafferty, C.S., Gilmer, G.H., Jaraíz, M., Poate, J.M., Luftman, H.S., and Haynes, T.E., J. Appl. Phys. 81 (1997) p. 6031.CrossRefGoogle Scholar