Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-27T21:34:53.411Z Has data issue: false hasContentIssue false

Developments and Applications for All-Aluminum Alloy Vacuum Systems

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

Aluminum and aluminum alloys have long been among the preferred materials for ultrahigh vacuum (UHV) systems operating in the 10−10–10−11 torr (10−8–10−11 Pa) range. Pure aluminum and aluminum alloys have an extremely low outgassing rate, are completely nonmagnetic, lack crystal structure transitions at low temperatures, are not sources of heavy metals contamination in semiconductor processing applications, have low residual radioactivity in radiation environments, and are lightweight. Because of aluminum's high thermal conductivity and low thermal emissivity, aluminum components can tolerate high heat fluxes in spite of the relatively low melting point of aluminum.

Recently developed aluminum alloys and new surface finishing techniques allow the attainment of extremely high vacuums (XHV) in the 10−12–10−13 torr (10−10–10−11 Pa) range. XHV technology requires the use of special aluminum alloy flange/gasket/bolt, nut and washer combinations, aluminum alloy-ceramic seals, windows, bellows, right-angle and gate valves, turbomolecular pumps, sputter ion pumps and titanium sublimination pumps, Bayard-Alpert ion gauges, quadrupole mass filters, and related aluminum alloy vacuum components. New surface treatment methods and new techniques in welding and extremely sensitive helium leak testing are required. In short, a whole new technology has been developed to take advantage of the opportunities presented by these new vacuum materials. This article describes some of these newly developed fabrication technologies and vacuum materials.

The TRISTAN electron-positron collider constructed at the National Laboratory for High Energy Physics in Japan is the first all-aluminum alloy accelerator, and the first to use UHV technology.

Type
Materials for Vacuum
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Ishimaru, H., J. Vac. Sci. Technol. A2 (1984) p. 1170.CrossRefGoogle Scholar
2.Chen, J.R., Lee, C.H., and Liu, Y.C., Topical Conference on Vacuum Design of Advanced and Compact Synchrotron Light Sources, 1989.Google Scholar
3.Dylla, H.F., Manos, D.M., LaMarche, P.H., Citrolo, J.C., Provost, T.J., and Magee, C.W., 11th Intl. Vacuum Congress, Cologne, 1989.Google Scholar
4.Miyamoto, M., Sumi, Y., Komaki, S., Narushima, K., and Ishimaru, H., J. Vac. Sci. Technol. A4 (1986) p. 2515.CrossRefGoogle Scholar
5.Suemitsu, M., Kaneko, T., and Miyamoto, N., J. Vac. Sci. Technol. A5 (1987) p. 37.CrossRefGoogle Scholar
6.Katoh, Y., Isoyama, E., and Hasegawa, N., J. Jpn. Inst. Light Met. 38 (1988) p. 462.CrossRefGoogle Scholar
7.Ishimaru, H., Oyo Butsuri 58 (12) (1989) p. 1764.Google Scholar
8.Chen, J.R., Narushima, K., and Ishimaru, H., J. Vac. Sci. Technol. A3 (1985) p. 2188.CrossRefGoogle Scholar
9.Chen, J.R. and Liu, Y.C., J. Vac. Sci. Technol. A5 (1987) p. 262.CrossRefGoogle Scholar
10.Chen, J.R., Lee, C.H., Chen, J.C., Hsieh, H.L., and Liu, Y.C., J. Vac. Sci. Technol. A6 (1987) p. 3422.CrossRefGoogle Scholar
11.Saitoh, S., Shimura, K., Iwata, T., Watanabe, F., Momose, T., and Ishimaru, H., 36th Natl. AVS Symposium, Boston, 1989.Google Scholar
12.Ohta, N., Watanabe, F., Kanazawa, K., Momose, T., and Ishimaru, H., 36th Natl. AVS Symposium, Boston, 1989.Google Scholar
13.Ishimaru, H., J. Vac. Sci. Technol. 15(6) (1987) p. 1853.CrossRefGoogle Scholar
14.Ishimaru, H., Vacuum 32 (1982) p. 759.CrossRefGoogle Scholar
15.Ishimaru, H., Vacuum 33 (1983) p. 339.CrossRefGoogle Scholar
16.Saeki, H., Ikeda, J., and Ishimaru, H., Vacuum 39 (1989) p. 563.CrossRefGoogle Scholar
17.Momose, T., Satoh, S., and Ishimaru, H., Vacuum 34 (1984) p. 806.CrossRefGoogle Scholar
18.Ishimaru, H., Narushima, K., Kanazawa, K., Suetsugu, Y., Bintinger, D., Jöstlein, H., and Trbojvic, D., J. Vac. Sci. Technol. A6 (1988) p. 1293.CrossRefGoogle Scholar
19.Sakai, I., Ishimaru, H., and Horikoshi, G., Vacuum 32 (1982) p. 33.CrossRefGoogle Scholar
20.Itoh, K., Waragai, K., Komuro, H., Ishigaki, T., and Ishimaru, H., 36th National AVS Symposium, Boston, 1989.Google Scholar
21.Ishimaru, H., Kuroda, T., Kaneko, O., Okano, Y., and Sakurai, K., J. Vac. Sci. Technol. A3 (1985) p. 1703.CrossRefGoogle Scholar
22.Hisamatsu, H., Momose, T., and Ishimaru, H., to be published in Vacuum.Google Scholar
23.Watanabe, F., J. Vac. Sci. Technol. A5 (1986) p. 242.Google Scholar
24.Watanabe, F. and Ishimaru, H., J. Vac. Sci. Technol. A4 (1986) p. 1720.CrossRefGoogle Scholar
25.Watanabe, F. and Ishimaru, H., 11th Intl. Vacuum Congress, Cologne, 1989.Google Scholar
26.Chen, J.R., Narushima, K., Miyamoto, M., and Ishimaru, H., J. Vac. Sci. Technol. A4 (1985) p. 2515.Google Scholar
27.Ishimaru, H., J. Vac. Set. Technol. A7 (1989) p. 2439.CrossRefGoogle Scholar
28.Ishimaru, H., Proceedings of Surface Conditioning of Vacuum Systems (American Vacuum Society Series 8, Los Angeles, 1989).Google Scholar
29.Ishimaru, H., Itoh, K., Ishigaki, T., Komuro, H., and Watanabe, F., 11th International Vacuum Congress, Cologne, 1989.Google Scholar
30.Mohri, M., Maeda, S., Odagiri, H., Hashiba, M., Yamashina, T., and Ishimaru, H., Vacuum 34 (1984) p. 643.CrossRefGoogle Scholar
31.Watanabe, F. and Ishimaru, H., 36th National AVS Symposium, Boston, 1989.Google Scholar
32.Ishimaru, H., Momose, T., Narushima, K., Mizuno, H., Kanazawa, K., Watanabe, H., and Shimamoto, S., J. Vac. Sci. Technol. A4 (1986) p. 1762.CrossRefGoogle Scholar
33.Ishimaru, H., Construction Workshop Proceedings, Synchrotron Radiation Research Center, Taiwan, 1988.Google Scholar
34.Momose, T., Kanazawa, K., Hisamatsu, H., and Ishimaru, H., J. Vac. Sci. Technol. A7 (1989) p. 3092.CrossRefGoogle Scholar
35.Momose, T., Chen, J.R., Kanazawa, K., Hisamatsu, H., and Ishimaru, H., J. Vac. Sci. Technol. A7 (1989) p. 3098.CrossRefGoogle Scholar
36.Itoh, K., Ishigaki, T., Kamikawana, A., and Ishimaru, H., J. Vac. Set. Technol. A7 (1988, 1989) p. 2435.CrossRefGoogle Scholar
37.Nomura, S., Proceedings of ALVALAB Seminar, December, 1989, p. 175.Google Scholar
38.Itoh, K., Uramoto, J., and Ishimaru, H., 17th International Conference on Metallurgical Coatings, San Diego, CA, 1990.Google Scholar
39.Saeki, H., Ikeda, J., and Ishimaru, H., J. Vac. Sci. Technol. A6 (1988) p. 2883.CrossRefGoogle Scholar
40.Saeki, H., Ikeda, J., Kohzu, I., and Ishimaru, H., J. Vac. Sci. Technol. A8 (1990).Google Scholar
41.Yamagata, Y., Higuchi, T., Saeki, H., and Ishimaru, H., 36th National AVS Symposium, Boston, 1989.Google Scholar
42.Ishimaru, H., Mikasa, Y., Takemura, H., and Miyahara, A., Proc. Japan-U.S. Workshop on Vacuum Technologies for Fusion Devices, Aug. 1–5, 1988, Inst, of Plasma Physics, Nagoya Univ., IPPJ-T-38, p. 288.Google Scholar