Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-12T23:47:16.508Z Has data issue: false hasContentIssue false

The Development of Polymeric Devices as Dielectrophoretic Separators and Concentrators

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

Efficient and reliable particle separators and concentrators are needed to support a wide range of analytical functions including pathogen detection, sample preparation, high-throughput particle sorting, and biomedical diagnostics. The advent of lab-on-a-chip devices based on the phenomenon of dielectrophoresis offers advantages that can meet several of the challenges associated with cell sorting and detection. The majority of the devices presented in the scientific literature have used glass-based devices for these applications, but there has been recent activity that indicates that polymer-based devices can operate as effectively as their glass progenitors. Processing and operational advantages motivate the transition from glass and silicon to polymer microdevices: mechanical robustness, economy of scale, ease of thermoforming and mass manufacturing, and the availability of numerous innate chemical polymer compositions for tailoring performance. We present here a summary of the developments toward, and results obtained from, these polymeric dielectrophoretic devices in the selective trapping, concentration, and gated release of a range of biological organisms and particles.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Pohl, H.A.J. Appl. Phys. 22 (1951) p. 869.CrossRefGoogle Scholar
2Pohl, H.A.J. Appl. Phys. 29 (1958) p. 1182.CrossRefGoogle Scholar
3Crane, J. and Pohl, H.A.J. Electrochem. Soc. 115 (1968) p. 584.CrossRefGoogle Scholar
4Pohl, H.A. and Hawk, I.Science 152 (1966) p. 647.Google Scholar
5Yang, J.Huang, Y.Wang, X.B.Becker, F.F. and Gascoyne, P.R.C.Anal. Chem. 71 (1999) p. 911.CrossRefGoogle Scholar
6Hughes, M.P.Pethig, R. and Wang, X.B.J. Phys. D Appl. Phys. 29 (1996) p. 474.CrossRefGoogle Scholar
7Markx, G.H.Talary, M.S. and Pethig, R.J. Biotechnol. 32 (1994) p. 29.CrossRefGoogle Scholar
8Zheng, L.Brody, J.P. and Burke, P.J.Biosens. Bioelectron. 20 (2004) p. 606.CrossRefGoogle Scholar
9Washizu, M. and Kurosawa, O.IEEE Trans. Ind. Appl. 26 (1990) p. 1165.CrossRefGoogle Scholar
10Akin, D.Li, H.B. and Bashir, R.Nano Lett. 4(2) (2004) p. 257.Google Scholar
11Zhang, Z.B.Liu, X.J.Campbell, E.E.B. and Zhang, S.L.J. Appl. Phys. 98 056103/1 (2005).Google Scholar
12Cen, E.G.Dalton, C.Li, Y.Adamia, S.Pilarski, L.M., and Kaler, K.V.I.S.J. Microbiol. Methods 58 (2004) p. 387.CrossRefGoogle Scholar
13Wu, Y.Huang, C.Wang, L.Miao, X.Xing, W. and Cheng, J.Colloids Surf., A: Physicochem. Eng. Aspects 262 (2005) p. 57.Google Scholar
14Masuda, S.Itagaki, T. and Kosakada, M.IEEE Trans. Ind. Appl. 24 (1988) p. 740.CrossRefGoogle Scholar
15Lee, S.W.Yang, S.D.Kim, K.W.Kim, Y.K. and Lee, S.H.Proc. Conf. IEEE Engineering in Medicine and Biology Society (1994) p. 1019.Google Scholar
16Chou, C.-F.Tegenfeldt, J.O.Bakajin, O.Chan, S.S., Cox, E.C.Darnton, N.Duke, T. and Austin, R.H., Biophys. J. 83 (2002) p. 2170.CrossRefGoogle Scholar
17Zhou, G.Imamura, M.Suehiro, J. and Hara, M.Proc. 37th Annu. Meet. IEEE Industry Applications Society (2002) p. 1404.Google Scholar
18Suehiro, J.Shutou, M.Hatano, T. and Hara, M.Sens. Actuators B Chem. 96 (2003) p. 144.Google Scholar
19Clarke, R.W.White, S.S.Zhou, D.J.Ying, L.M., and Klenerman, D.Angew. Chem. Int. Ed. 44 (2005) p. 3747.CrossRefGoogle Scholar
20Cummings, E.B. and Singh, A.K.Anal. Chem. 75 (2003) p. 4724.CrossRefGoogle Scholar
21Lapizco-Encinas, B.H., Simmons, B.A.Cummings, E.B., and Fintschenko, Y.Anal. Chem. 76 (2004) p. 1571.CrossRefGoogle Scholar
22Lapizco-Encinas, B.H., Simmons, B.A.Cummings, E.B., and Fintschenko, Y.Electrophoresis 25 (2004) p. 1695.CrossRefGoogle Scholar
23Lapizco-Encinas, B.H., Davalos, R.V.Simmons, B.A., Cummings, E.B. and Fintschenko, Y.J. Microbiol. Methods 62 (2005) p. 317.CrossRefGoogle Scholar
24Barrett, L.M.Skulan, A.J.Singh, A.K.Cummings, E.B., and Fiechtner, G.J.Anal. Chem. 77 (21) (2005) p. 6798.CrossRefGoogle Scholar
25Simmons, B.A.Lapizco-Encinas, B.H., Shediac, R.Hachman, J.Chames, J.Brazzle, J.Ceremuga, J.Fiechtner, G.Cummings, E. and Fintschenko, Y.Royal Society of Chemistry Special Publication–Micro Total Analysis Systems 2004 297 (2) (2004) p. 171.Google Scholar
26McGraw, G.J.Davalos, R.V.Cummings, E.B., Fintschenko, Y.Fiechtner, G.J. and Simmons, B.A.Polymer Preprints (American Chemical Society, Division of Polymer Chemistry) 46 (2) (2005) p. 1208.Google Scholar
27Wainright, A.Nguyen, U.T.Bjornson, T. and Boone, T.D.Electrophoresis 24 (21) (2003) p. 3784.Google Scholar
28Fiorini, G.S. and Chiu, D.T.BioTechniques 38 (2005) p. 429.CrossRefGoogle Scholar
29Becker, H. and Gartner, C.Electrophoresis 21 (2000) p. 12.Google Scholar
30Becker, H. and Locascio, L.E.Talanta 56 (2002) p. 267.CrossRefGoogle Scholar
31Mela, P.Berg, A. van den, Fintschenko, Y.Cummings, E.B.Simmons, B.A. and Kirby, B.J.Electrophoresis 26 (2005) p. 1792.CrossRefGoogle Scholar
32McGraw, G.J.Davalos, R.V.Brazzle, J.D.Hachman, J.T., Hunter, M.C.Chames, J.M.Fiechtner, G.J., Cummings, E.B.Fintschenko, Y. and Simmons, B.A.Proc. SPIE 5715 (2005) p. 59.Google Scholar
33Pohl, H.A.Dielectrophoresis: The Behavior of Neutral Matter in Nonuniform Electric Fields (Cambridge University Press, Cambridge, U.K., 1978)Google Scholar
34Jones, T.B.Electromechanics of Particles (Cambridge University Press, Cambridge, U.K., 1995)Google Scholar
35Kirby, B.J. and Hasselbrink, E.F.Electrophoresis 25 (2004) p. 187.CrossRefGoogle Scholar
36Kirby, B.J. and Hasselbrink, E.F.Electrophoresis 25 (2004) p. 203.Google Scholar
37Ross, D. and Locascio, L.E.Anal. Chem. 75 (2003) p. 1218.Google Scholar
38Henry, A.C.Tutt, T.J.Galloway, M.Davidson, Y.McWhorter, C.S.Soper, S.A. and McCarley, R.L.Anal. Chem. 72 (2000) p. 5331.CrossRefGoogle Scholar
39Schutzner, W. and Kenndler, E.Anal. Chem. 64 (1992) p. 1991.Google Scholar
40Locascio, L.E.Perso, C.E. and Lee, C.S.J. Chromatogr. A 1 (1999) p. 275.Google Scholar
41Pethig, R. J.Burt, P.H.Parton, A.Rizvi, N.Talary, M.S. and Tame, J.A.J. Micromech. Microeng. 8 (1998) p. 57.Google Scholar
42Altomare, L.Borgatti, M.Medoro, G.Manaresi, N.Tartagni, M.Guerrieri, R. and Gambari, R.Biotech. Bioengr. 82 (4) (2003) p. 474.CrossRefGoogle Scholar
43Huang, Y.Yang, J.M.Hopkins, P.J.Kassegne, S., Tirado, M.Forster, A.H. and Reese, H., Biomed. Microdevices 5 (3) (2003) p. 217.Google Scholar
44Cul, L. and Morgan, H.J. Micromech. Microeng. 10 (2000) p. 72.Google Scholar
45Hu, X.Bessette, P.H.Qian, J.Meinhart, C.D.Daugherty, P.S. and Soh, H.T.Proc. Natl. Acad. Sci. USA 102 (44) (2005) p. 15757.CrossRefGoogle Scholar
46Yang, J.Huang, Y.Wang, X.B.Becker, F.F. and Gascoyne, P.R.C.Anal. Chem. 71 (1999) p. 911.CrossRefGoogle Scholar
47Lao, A.I.K.Lee, Y.K. and Hsing, I.M.Anal. Chem. 76 (2004) p. 2719.CrossRefGoogle Scholar
48Yang, J.Huang, Y.Wang, X.B.Becker, F.F. and Gascoyne, P.R.C.Biophys. J. 78 (2000) p. 2680.CrossRefGoogle Scholar
49Giddings, J.C.Science 60 (1993) p. 1456.CrossRefGoogle Scholar
50Park, B.Y. and Madou, M.J.Electrophoresis 26 (2005) p. 3745.Google Scholar