Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-03T08:25:51.776Z Has data issue: false hasContentIssue false

The development of organic spin valves from unipolar to bipolar operation

Published online by Cambridge University Press:  15 July 2014

Tho D. Nguyen
Affiliation:
Physics and Astronomy Department, University of Georgia, USA; [email protected]
Eitan Ehrenfreund
Affiliation:
Technion-Israel Institute of Technology and University of Utah, USA; [email protected]
Z. Valy Vardeny
Affiliation:
Physics and Astronomy Department, University of Utah, USA; [email protected]
Get access

Abstract

We review the first 10 years of research on organic spin-valve devices in the field of organic spintronics. The device figure of merit, magnetoresistance, is governed by the hyperfine interaction of the organic interlayer and the ability of the ferromagnetic electrodes to inject spin-polarized carriers. By choosing a deuterated π-conjugated polymer with a relatively long spin diffusion length as the organic interlayer and using a thin LiF buffer layer to raise the Fermi level of the cathode, a bipolar spin-valve device could be obtained in which the electroluminescence emission intensity is controlled by an external magnetic field. We show that the underlying physics of this spin-organic light-emitting diode is very different from that of a unipolar organic spin valve because of the magnetic properties of the spin-polarized bipolar space charge limited current in the device.

Type
Research Article
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Dediu, V., Murgia, M., Matacotta, F.C., Taliani, C., Barbanera, S., Solid State Commun. 122, 181 (2002).Google Scholar
Baibich, M.N., Broto, J.M., Fert, A., Van Dau, F.N., Petroff, F., Etienne, P., Creuzet, G., Friederich, A., Chazelas, J., Phys. Rev. Lett. 61 (21), 2472 (1988).Google Scholar
Binasch, G., Grünberg, P., Saurenbach, F., Zinn, W., Phys. Rev. B: Condens. Matter 39 (7), 4828 (1989).Google Scholar
Xiong, Z.H., Wu, D., Vardeny, Z.V., Shi, J., Nature 427, 821 (2004).Google Scholar
Wang, F.J., Xiong, Z.H., Wu, D., Shi, J., Vardeny, Z.V., Synth. Met. 155 (1), 172 (2005).Google Scholar
Pramanik, S., Bandyopadhyay, S., Garre, K., Cahay, M., Phys. Rev. B: Condens. Matter 74, 235329 (2006).Google Scholar
Majumdar, S., Laiho, R., Laukkanen, P., Vayrynen, I.J., Majumdar, H.S., Osterbacka, R., Appl. Phys. Lett. 89 (12), 122114 (2006).Google Scholar
Wang, F.J., Yang, C.G., Vardeny, Z.V., Li, X.G., Phys. Rev. B: Condens. Matter 75, 245324 (2007).Google Scholar
Santos, T.S., Lee, J.S., Migdal, P., Lekshmi, I.C., Satpati, B., Moodera, J.S., Phys. Rev. Lett. 98, 016601 (2007).Google Scholar
Nguyen, T.D., Ehrenfreund, E., Vardeny, Z.V., Science 337, 204 (2012).Google Scholar
Dediu, V.A., Hueso, L.E., Bergenti, I., Taliani, C., Nat. Mater. 8, 707 (2009).Google Scholar
Martens, H.C.F., Blom, P.W.M., Schoo, H.F.M., Phys. Rev. B: Condens. Matter 61, 7489 (2000).Google Scholar
Pramanik, S., Stefanita, C.-G., Patibandla, S., Bandyopadhyay, S., Garre, K., Harth, N., Cahay, M., Nat. Nanotechnol. 2, 216 (2007).Google Scholar
Shim, J.H., Raman, K.V., Park, Y.J., Santos, T.S., Miao, G.X., Satpati, B., Moodera, J.S., Phys. Rev. Lett. 100, 226603 (2008).Google Scholar
Drew, A.J., Hoppler, J., Schulz, L., Pratt, F.L., Desai, P., Shakya, P., Kreouzis, T., Gillin, W.P., Suter, A., Morley, N.A., Malik, V.K., Dubroka, A., Kim, K.W., Bouyanfif, H., Bourqui, F., Bernhard, C., Scheuermann, R., Nieuwenhuys, G.J., Prokscha, T., Morenzoni, E., Nat. Mater. 8 (2), 109 (2009).Google Scholar
Bergenti, I., Dediu, V., Arisi, E., Mertelj, T., Murgia, M., Riminucci, A., Ruani, G., Solzi, M., Taliani, C., Org. Electron. 5, 309 (2004).Google Scholar
Nguyen, T.D., Hukic-Markosian, G., Wang, F.J., Wojcik, L., Li, X.G., Ehrenfreund, E., Vardeny, Z.V., Nat. Mater. 9, 345 (2010).Google Scholar
Lin, R., Wang, F., Rybicki, J., Wohlgenannt, M., Hutchinson, K.A., Phys. Rev. B: Condens. Matter 81, 195214 (2010).Google Scholar
Smith, D.L., Silver, R.N., Phys. Rev. B: Condens. Matter 64, 045323 (2001).Google Scholar
Ruden, P.P., Smith, D.L., J. Appl. Phys. 95, 4898 (2004).CrossRefGoogle Scholar
Schulz, L., Nuccio, L., Willis, M., Desai, P., Shakya, P., Kreouzis, T., Malik, V.K., Bernhard, C., Pratt, F.L., Morley, N.A., Suter, A., Nieuwenhuys, G.J., Prokscha, T., Morenzoni, E., Gillin, W.P., Drew, A.J., Nat. Mater. 10 (1), 39 (2011).Google Scholar
Brown, T.M., Friend, R.H., Millard, I.S., Lacey, D.J., Burroughes, J.H., Cacially, F., Appl. Phys. Lett. 77, 3096 (2000).Google Scholar
Bandyopadhyay, S., Phys. Rev. B: Condens. Matter 81, 153202 (2010).Google Scholar
Nguyen, T.D., Wang, F., Li, X.-G., Ehrenfreund, E., Vardeny, Z.V., Phys. Rev. B: Condens. Matter 87, 075205 (2013).Google Scholar
Julliere, M., Phys. Lett. A 54 (3), 225 (1975).Google Scholar
Ehrenfreund, E., Vardeny, Z.V., Phys. Chem. Chem. Phys. 15, 7967 (2013).Google Scholar
Vinzelberg, H., Schumann, J., Elefant, D., Gangineni, R.B., Thomas, J., Büchner, B., J. Appl. Phys. 103, 093720 (2008).Google Scholar
Yoo, J.-W., Jang, H.W., Prigodin, V.N., Kao, C., Eom, C.B., Epstein, A.J., Phys. Rev. B: Condens. Matter 80, 205207 (2009).Google Scholar
Nguyen, T.D., Hukic-Markosian, G., Wang, F., Li, X.-G., Ehrenfreund, E., Vardeny, Z.V., Synth. Met. 161, 598 (2011).Google Scholar