Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-28T22:24:24.919Z Has data issue: false hasContentIssue false

Detached Bridgman Growth—A Standard Crystal Growth Method with a New Twist

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

Bridgman or vertical gradient freeze (VGF) crystal growth processes have several advantages compared to other melt growth methods, especially the possibility to achieve a low level of thermal stress and low dislocation densities in the grown crystals. However, crystals grown in contact with a crucible usually suffer from mechanical stress during cooling, reducing the structural quality. The “detached” or “dewetted” Bridgman growth avoids this problem and has recently been investigated in more detail as a promising tool to improve crystal quality. Detached growth, where the crystal is separated from the crucible wall by a gap of 10–100 μm, was found originally in some microgravity experiments going back to 1975. Considerable improvements of crystal quality were reported for those cases; however, the reasons for the detachment were not fully understood. In the last 10–15 years, theoretical investigations as well as new experiments have shown beyond a doubt that detached growth can, in principle, be achieved in Earth's gravity with the same advantages that were demonstrated in the crystals grown under microgravity. It could be shown that the ability to achieve detachment depends on a complex interplay of the wetting of the melt with the crucible and the crystal as well as the pressure balance in the system, including the hydrostatic pressure, the gas pressure above the melt, and the pressure below the melt. It turns out that for stable detachment, only, specific combinations of meniscus shape, gap size, wetting angle, growth angle, and pressures work. The conditions that lead to detachment are thus highly specific for a given system.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Witt, A.F., Gatos, H.C., Lichtensteiger, M., Lavine, M.C., Herman, C.J., J. Electrochem. Soc. 122, 276 (1975).CrossRefGoogle Scholar
2Witt, A.F., Gatos, H.C., Lichtensteiger, M., Herman, C.J., J. Electrochem. Soc. 125, 1832 (1978).CrossRefGoogle Scholar
3Wilcox, W.R., Regel, L., Microgravity Sci. Technol. VIII/1, 56 (1995).Google Scholar
4Zemskov, V.S., Fiz. Khim. Obrab. Mater. 17, 56 (1983).Google Scholar
5Duffar, T., Paret-Harter, I., Dusserre, P., J. Cryst. Growth 100, 171 (1990).CrossRefGoogle Scholar
6Duffar, T., Boiton, P., Dussere, P., Abadie, J., J. Cryst. Growth 179, 397 (1997).CrossRefGoogle Scholar
7Duffar, T., Dusserre, P., Picca, F., Lacroix, S., Giacometti, N., J. Cryst. Growth 211, 434 (2000).CrossRefGoogle Scholar
8Wang, Y., Regel, L.L., Wilcox, W.R., J. Cryst. Growth 209, 175 (2000).CrossRefGoogle Scholar
9Bizet, L., Duffar, T., Cryst. Res. Technol. 39, 491 (2004).CrossRefGoogle Scholar
10Palosz, W., Volz, M.P., Cobb, S., Motakef, S., Szofran, F.R., J. Cryst. Growth 277, 124 (2005).CrossRefGoogle Scholar
11Balint, S., Braescu, L., Sylla, L., Epure, S., Duffar, T., J. Cryst. Growth 310, 1564 (2008).CrossRefGoogle Scholar
12Kaiser, N., Cröll, A., Szofran, F.R., Cobb, S.D., Benz, K.W., J. Cryst. Growth 231, 448 (2001).CrossRefGoogle Scholar
13Li, J.G., Hausner, H.H., J. Eur. Ceram. Soc. 9, 101 (1992).CrossRefGoogle Scholar
14Cröll, A., Salk, N., Szofran, F.R., Cobb, S.D., Volz, M.P., J. Cryst. Growth 242, 45 (2002).CrossRefGoogle Scholar
15Sylla, L., Paulin, J.P., Vian, G., Garnier, C., Duffar, T., Mater. Sci. Eng. A 495, 208 (2008).CrossRefGoogle Scholar
16Zhang, H., Larson, D.J. Jr., Wang, C.L., Chen, T.H., J. Cryst. Growth 250, 215 (2003).CrossRefGoogle Scholar
17Duffar, T., Dusserre, P., Giacometti, N., J. Cryst. Growth 223, 69 (2001).CrossRefGoogle Scholar
18Szofran, F.R., Benz, K.W., Cobb, S.D., Cröll, A., Dold, P., Kaiser, N., Motakef, S., Schweizer, M., Volz, M.P., Vujisic, L., Walker, J.S., Reduction of Defects in Germanium-Silicon, in Proc. Microgravity Mat. Sci. Conf. 2000, Ramachandran, N., Bennett, N., McCauley, D., Murphy, K., Poindexter, S., Eds. (2001), pp. 573579.Google Scholar
19Schweizer, M., Cobb, S.D., Volz, M.P., Szoke, J., Szofran, F.R., J. Cryst. Growth 235, 161 (2002).CrossRefGoogle Scholar
20Schweizer, M., Volz, M.P., Cobb, S.D., Vujisic, L., Motakef, S., Szoke, J., Szofran, F.R., J. Cryst. Growth 237–239, 2107 (2002).CrossRefGoogle Scholar
21Volz, M.P., Schweizer, M., Kaiser, N., Cobb, S.D., Vujisic, L., Motakef, S., Szofran, F.R., J. Cryst. Growth 237–239, 1844 (2002).CrossRefGoogle Scholar
22Pätzold, O., Jenkner, K., Scholz, S., Cröll, A., J. Cryst. Growth 277, 37 (2005).CrossRefGoogle Scholar
23Fiederle, M., Duffar, T., Garandet, J.P., Babentsov, V., Fauler, A., Benz, K.W., Dusserre, P., Corregidor, V., Dieguez, E., Delaye, P., Roosen, G., Chevrier, V., Launay, J.C., J. Cryst. Growth 267, 429 (2004).CrossRefGoogle Scholar
24Volz, M.P., Schweizer, M., Raghothamachar, B., Dudley, M., Szoke, J., Cobb, S.D., Szofran, F.R., J. Cryst. Growth 290, 446 (2006).CrossRefGoogle Scholar