Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-25T09:19:34.599Z Has data issue: false hasContentIssue false

Designed Interfaces in Polymer Nanocomposites: A Fundamental Viewpoint

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

Using nanocomposites in design-critical applications requires an understanding of their structure–property–function relationships. Despite many reports of highly favorable properties, the behavior of polymer nanocomposites is not generally predictable. The ability to tailor the filler/matrix interaction and an understanding of the impact of the inter face on macroscopic properties are key to designing their properties. Tailoring can be achieved by grafting short mole cules or polymer chains from the surface with precise control over their chain length (1–1000 mers), graft density (0.01–1 chains/nm2), and chemical architecture. The challenge is understanding the impact of the modified surfaces on the properties of the interfacial polymer, which can be more than 50% of the volume of the polymer matrix and, hence, can exert significant control over the macroscopic behavior of the nanocomposite. This ar ticle highlights the fundamental technical challenges that need to be overcome before spherical nanopar ticle or nanotube composites can be designed. In particular, we discuss results from the recent literature that have significantly advanced our ability to predict and control nanocomposite properties through the use of designed interfaces.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Treacy, M.M.J., Ebbesen, T.W., Gibson, J.M., Nature 381, 678 (1996).CrossRefGoogle Scholar
2.Ajayan, P.M., Braun, P.V., Schadler, L.S., Nanocomposite Science and Technology (Wiley, Weinham, Germany, 2003) chap. 2.Google Scholar
3.Dibenedetto, A.T., Mater. Sci. Eng. A 302, 74 (2001).CrossRefGoogle Scholar
4.Drzal, L.T., Rich, M.J., and Koenig, M.F., J. Adhesion 16, 33 (1983).Google Scholar
5.Granick, S.et al, J. Polym. Sci., Part B: Polym. Phys. 41, 2755 (2003).Google Scholar
6.Jones, R.L. et al., Nature 400, 146 (1999).CrossRefGoogle Scholar
7.Kumar, S.K., Vacatello, M., and Yoon, D.Y., J. Chem Phys. 89, 5206 (1988).CrossRefGoogle Scholar
8.Zheng, X. et al., Phys. Rev. Lett. 79, 241 (1979).Google Scholar
9.Frank, B. et al., Macromolecules 29, 6531 (1996).Google Scholar
10.Ding, W. et al., Nano Lett. 3, 1593 (2003).CrossRefGoogle Scholar
11.Borukhov, I., Leibler, L., Macromolecules 35 (13), 5171 (2002).Google Scholar
12.Vaia, R.A., Giannelis, E.P., Macromolecules 30 (25), 8009 (1997).Google Scholar
13.Chou, T.W., Microstructural Design of Fiber Composites (Cambridge University Press, New York, 1992).CrossRefGoogle Scholar
14.Gay, D., Hoa, S.V., Tsai, S.W., Composite Materials: Design and Applications (CRC Press, New York, 2003).Google Scholar
15.Reiter, T., Dvorak, G.J., Tyergaard, V., J. Mech. Phys. Solids 45, 1281 (1997).Google Scholar
16.Hashin, Z., J. Appl. Mech. 50, 481 (1983).Google Scholar
17.Christensen, R.M., J. Mech. Phys. Solids 38, 379 (1990).Google Scholar
18.Bader, M.G., Bowyer, W.H., J. Phys D: Appl. Phys. 5, 2215 (1972).CrossRefGoogle Scholar
19.Yung, K.C., J.Wang, Yue, T.M., J. Reinf. Plast. Compos. 25, 847 (2006).CrossRefGoogle Scholar
20.Dalton, A.B. et al., Nature 423, 703 (2003).Google Scholar
21.Hughes, J.D.H., Compos. Sci. Tech. 41, 13 (1991).CrossRefGoogle Scholar
22.Pangelinan, A.B., McCullough, R.L., Kelley, M.J., J. Polym. Sci., Part B: Polym. Phys. 32, 2383 (1994).CrossRefGoogle Scholar
23.Droste, D.H., Dibenedetto, A.T., J. Appl. Polym. Sci. 13, 2149 (1968).CrossRefGoogle Scholar
24.Sottos, N.R., McCullough, R.L., Flight-Vehicle Mater. Struct. Dyn.—Assess. Future Directions 2 (2), 328 (1994).Google Scholar
25.Forrest, J.A., Dalnoki-Veress, K., Adv. Colloid Interface Sci. 94, 167 (2001).CrossRefGoogle Scholar
26.van Zanten, J.H., Wallace, W.E., Wu, W.-L., Phys. Rev. E 53 (3), R2053 (1996).CrossRefGoogle Scholar
27.DeMaggio, G.B. et al., Phys. Rev. Lett. 78, 1524 (1997).Google Scholar
28.Keddie, J.L., Jones, R.A.L., Cory, R.A., Faraday Discuss., 98, 219 (1994).Google Scholar
29.Forrest, J.A., Mattsson, J., Phys. Rev. E 61, R53 (2000).CrossRefGoogle Scholar
30.Singh, L., Ludovice, P.J., Henderson, C.L., Thin Solid Films 449, 231 (2004).CrossRefGoogle Scholar
31.Bansal, A. et al., Nature Mater. 4, 693 (2005).Google Scholar
32.Ellison, C.J., Ruszkowski, R.L., Fredin, N.J., Torkelson, J.M., Phys. Rev. Lett. 92, 119901 (2004).Google Scholar
33.Ellison, C.J., Torkelson, J.M., Nature Mater. 2, 695 (2003).CrossRefGoogle Scholar
34.Ash, B.J., Schadler, L.S., Siegel, R.W., Mater. Lett. 55 (1–2), 83 (2002).Google Scholar
35.Becker, C., Krug, H., Schmidt, H., in Mater. Res. Soc. Symp. Proc., Coltrain, B.K., Sanchez, C., Schaefer, D.W., Wilkes, G.L., Eds. (Materials Research Society, Pittsburgh, PA, 1996), vol. 435, pp. 237241.Google Scholar
36.Alcoutlabi, M., McKenna, G.B., J. Phys.: Cond. Matter 17, R461 (2005).Google Scholar
37.Wu, W.-L., Wallace, W.E., Van Zanten, J., in Mater. Res. Soc. Symp. Proc., Lu, T.-M., Murarka, S.P., Kuan, T.-S., Ting, C.H., Eds. (Materials Research Society, Pittsburgh, PA, 1995) vol. 381, pp. 147151.Google Scholar
38.Pluddemann, E.P., Silane Coupling Agents (Plenum Press, New York, ed. 2, 1991).Google Scholar
39.Bourgeat-Lami, E., J. Nanosci. Nanotech. 2, 1 (2002).Google Scholar
40.Prucker, O., Ruhe, J., Macromolecules 31, 592 (1998).CrossRefGoogle Scholar
41.Pyun, J., Matyjaszewski, K., Chem. Mater. 13, 3436 (2001).Google Scholar
42.Advincula, R.C., J. Dispersion Sci. Tech. 24, 343 (2003).CrossRefGoogle Scholar
43.Boyes, S.G. et al., Surf. Sci. 570, 1 (2004).CrossRefGoogle Scholar
44.Edmondson, S., Osborne, V.L., Huck, W.T.S., Chem. Soc. Rev. 33, 14 (2004).Google Scholar
45.Tsujii, Y. et al., Adv. Polym. Sci. 197, 1 (2006).Google Scholar
46.Li, C., Benicewicz, B.C., Macromolecules 38, 5929 (2005).Google Scholar
47.Li, C., Benicewicz, B.C., Macromolecules 39, 3175 (2006).Google Scholar
48.Mackay, M.E. et al., Science 311, 1740 (2006).Google Scholar
49.Gardon, J.L., J. Phys. Chem. 67, 1935 (1963).Google Scholar
50.Avella, M., Errico, M.E., Gentile, G., Macromol. Symp. 234, 170 (2006).Google Scholar
51.Ma, C.-C.M., Chen, Y.-J., Kuan, H.-C., J. Appl. Polym. Sci. 98, 2266 (2005).Google Scholar
52.Navrotsky, A., Geochem. Trans. 4, 34 (2003).Google Scholar
53.Van Krevelen, D.W., Properties of Polymers (Elsevier, Amsterdam, 1980).Google Scholar
54.Zhulina, E.G., Birshtein, T.M., Borisov, O.V., Eur. Phys. J. E 20, 243 (2006).Google Scholar
55.Klos, J., Pakula, T., Macromolecules 37, 8145 (2004).Google Scholar
56.Savin, D.A. et al., J. Polym. Sci. B: Polym. Phys. 40, 2667 (2002).CrossRefGoogle Scholar
57.Harton, S.E., Kumar, S.K., Macromolecules (2007) in review.Google Scholar
58.Scheutjens, J.M.H.M., Fleer, G.J., J. Phys. Chem. 83, 1619 (1979).Google Scholar
59.Helfand, E., Macromolecules 25, 1676 (1992).CrossRefGoogle Scholar
60.Flory, P.J., J. Chem. Phys. 9, 660 (1941).Google Scholar
61.Raphaël, E., Pincus, P., Fredrickson, G.H., Macromolecules 26, 1996 (1993).CrossRefGoogle Scholar
62.Ciprari, D., Jacob, K., Tannenbaum, R., Macromolecules 39 6565 (2006).Google Scholar
63.Bansal, A., J. Polym. Sci. B: Polym. Phys. 44, 2944 (2006).Google Scholar
64.Lewis, S.L., PhD thesis, Rensselaer Polytechnic Institute, Troy, NY (2006).Google Scholar
65.Zhu, Z.Y. et al., Macromolecules 38, 8816 (2005).CrossRefGoogle Scholar
66.Corbierre, M.K., Langmuir 21, 6063 (2005).Google Scholar
67.Hasegawa, R., Aoki, Y., Doi, M., Macromolecules 29, 6656 (1996).CrossRefGoogle Scholar
68.Esselink, F.J. et al., Phys. Rev. B 48, 13451 (1993).Google Scholar
69.Li, C., Chou, T.-W., Compos. Sci. Tech. 66, 2409 (2006).Google Scholar
70.Fisher, F.T., Brinson, L.C., Compos. Sci. Tech. 61, 731 (2001).Google Scholar
71.Borodin, O. et al., J. Polym. Sci. B: Polym. Phys. 43, 1005 (2005).CrossRefGoogle Scholar
72.Hasegawa, R., Aoki, Y., Doi, M., Macromolecules 29, 6656 (1996).Google Scholar
73.Jiang, B., Liu, C., Zhang, C., Wang, B., Wang, Z., Compos. Part B: Eng. 38, 24 (2007).Google Scholar
74.Xiao, Z. et al., J. Polym. Sci. B: Polym. Phys. 44, 1084 (2006).Google Scholar
75.Buryachenko, V.A., Compos. Sci. Tech. 65, 2435 (2005).Google Scholar
76.Valavala, P.K., Odegard, G.M., Rev. Adv. Mater. Sci. 9, 34 (2005).Google Scholar