Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-12T22:38:27.493Z Has data issue: false hasContentIssue false

Dense Palladium and Perovskite Membranes and Membrane Reactors

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

The development of high-temperature processes and tighter environmental regulations requires utilization of efficient gas-separation processes that will provide high fluxes, high selectivity of separation, and the ability to operate at elevated temperatures. Dense inorganic membranes and membrane reactors are especially well suited for high-temperature reactions and separations, due in part to their thermal stability and high separation selectivity (in theory, infinite). Furthermore, membrane reactors offer an inherent advantage of combining reaction, product concentration, and separation in a single-unit operation for the improvement of process economics and waste minimization.

The classification of membrane reactors can either be by membrane material and geometry or by the configuration of the reactor. Porous and dense membranes in both tubular and disk forms have been used for membrane reactors. The membrane can either be catalytically active (catalytic membrane reactor [CMR]) or simply act as a separation medium. In the latter case, the catalyst is packed in the reactor, whose walls are formed by the membrane (packed-bed membrane reactor [PBMR]). In addition, if the membrane is also catalytically active, the reactor is called a packed-bed catalytic membrane reactor (PBCMR).

The principal materials from which porous inorganic (ceramic) membranes are made are alumina, zirconia, and glass. Alumina and zirconia membranes are usually asymmetric and composite, with a porous support (0.5–2.0 mm thick) for mechanical strength and one or more thin layers for carrying out separations.

On the other hand, glass membranes, such as Vycor and microporous glass, have symmetric pores. Materials commonly used as the porous support are alumina, granular carbon, sintered metal, and silicon carbide.

Type
Membranes and Membrane Processes
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Tsotsis, T.T., Champagnie, A.M., Minet, R.G. and Liu, P.K.T., in Computer-Aided Design of Catalysis, edited by Becker, E.R. and Pereira, C.J. (Marcel Dekker, New York, 1993) p. 471.Google Scholar
2.Koresh, J.E. and Soffer, A., Sep. Sci. Technol. 22 (1987) p. 973.CrossRefGoogle Scholar
3.Hammel, J.J., U.S. Patent No. 4,853,001 (1989).Google Scholar
4.Shelekhin, A.B., Bhandarkar, M., Dixon, A.C., and Ma, Y.H., J. Membr. Sci. 75 (1992) p. 221.CrossRefGoogle Scholar
5.Ma, Y.H., and Xiang, S., U.S. Patent No. 5,258,339 (November 2, 1993).Google Scholar
6.Lin, X., Noble, R.D., and Falconer, J.L., in Proc. 5th Int. Conf. on Inorganic Membranes, edited by Nakao, S. (Nagoya, Japan, 1998) p. 282.Google Scholar
7.McBride, R.B. and McKinley, D.L., Chem. Eng. Prog. 61 (3) (1965) p. 81.Google Scholar
8.Mardilovich, P.P., She, Y., and Ma, Y.H., AIChE J. 44 (2) (1998) p. 310.CrossRefGoogle Scholar
9.Li, Z.Y., Maeda, H., Kusakabe, K., Morooka, S., Anzai, H., and Akiyama, S., J. Membr. Sci. 78 (1993) p. 247.CrossRefGoogle Scholar
10.Yan, S., Maeda, H., Kusakabe, K., and Morooka, S., Ind. Eng. Chem. Res. 33 (1994) p. 616.CrossRefGoogle Scholar
11.Hybertson, B.M., Hansen, B.N., Barkley, R.M., and Sievers, R.E., Mater. Res. Bull. 26 (1991) p. 1127.CrossRefGoogle Scholar
12.Athayde, A.L., Baker, R.W., and Nguyen, P., J. Membr. Sci. 94 (1994) p. 299.CrossRefGoogle Scholar
13.Jayaraman, V. and Lin, Y.S., J. Membr. Sci. 104 (1995) p. 251.CrossRefGoogle Scholar
14.Jayaraman, V., Lin, Y.S., Pakala, M., and Lin, R.Y., J. Membr. Sci. 99 (1995) p. 89.CrossRefGoogle Scholar
15.Konno, M., Shindo, M., Sugawara, S., and Saito, S., J. Membr. Sci. 37 (1988) p. 503.CrossRefGoogle Scholar
16.Mardilovich, P.P., Kurman, P.V., Govyadinov, A.N., Mardilovich, L.P., Ermilova, M.M., Orekhova, N.V., Krivoshanova, A.N., Paterson, R., and Gryaznov, V.M., Russ. J. Phys. Chem. 70 (1996) p. 514.Google Scholar
17.Shu, J., Grandjean, B.P.A., Van Neste, A., and Kaliaguine, S., Can. J. Chem. Eng. 69 (1991) p. 1036.CrossRefGoogle Scholar
18.Ma, Y.H., Mardilovich, P.P., and She, Y., in Proc. 5th Int. Conf. on Inorganic Membranes, edited by Nakao, S. (Nagoya, Japan, 1998) p. 246.Google Scholar
19.Lin, Y.M. and Rei, M.H., Catal. Today 1351 (1998) p. 1.Google Scholar
20.Teraoke, Y., Zhang, H.M., Furukawa, S., and Yamazoe, N., Chem. Lett. (1988) p. 503.Google Scholar
21.Tsai, C.Y., Dixon, A.G., Ma, Y.H., Moser, W.R., and Pascucci, M.R., J. Am. Ceram. Soc. 81 (6) (1998) p. 1437.CrossRefGoogle Scholar
22.Balachrandran, U., Dusek, J.T., Mieville, R.L., Poppel, R.B., Kleefisch, M.S., Pei, S., Kobylinski, T.P., Udovich, C.A., and Bose, A.C., Appl. Catal. A: Gen. 133 (1) (1995) p. 19.CrossRefGoogle Scholar
23.Tsai, C.Y., Dixon, A.G., Moser, W.R., and Ma, Y.H., AIChE J. 43 (11A) (1997) p. 2741.CrossRefGoogle Scholar
24.Tsai, C.Y., Ma, Y.H., Moser, W.R., and Dixon, A.G., in Proc. 3nd Int. Conf. on Inorganic Membranes, edited by Ma, Y.H. (Worcester, MA, 1995) p. 271.Google Scholar
25.Kruidhof, H., Bouwmeester, H.J.M., Doorn, R.H.E. v., and Burggraaf, A.J., Solid State Ionics 63–65 (1993) p. 816.CrossRefGoogle Scholar