Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-08T00:13:28.188Z Has data issue: false hasContentIssue false

Damage in electron cryomicroscopy: Lessons from biology for materials science

Published online by Cambridge University Press:  10 December 2019

C.J. Russo
Affiliation:
Structural Studies Division, Medical Research Council Laboratory of Molecular Biology, UK; [email protected]
R.F. Egerton
Affiliation:
University of Alberta, Canada; [email protected]
Get access

Abstract

The recent success of electron cryomicroscopy in biology has drawn the attention of the materials science community, which is starting to employ similar techniques for imaging a wide variety of nonbiological specimens. This article reviews the theory and practical implications of radiation damage in electron microscopy, and then considers how electron cryomicroscopy techniques may be applied to other radiation-sensitive specimens of interest to materials scientists. We also discuss aspects of radiation damage that warrant further study as instrumentation technology advances and consider new methods that might be useful in the future.

Type
Cryogenic Electron Microscopy in Materials Science
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Kühlbrandt, W., Science 343, 1443 (2014).CrossRefGoogle Scholar
Dubochet, J., Adrian, M., Chang, J.-J., Homo, J.-C., Lepault, J., McDowall, A.W., Schultz, P., Q. Rev. Biophys. 21, 129 (1988).CrossRefGoogle Scholar
Crowther, R.A., Ed., in The Resolution Revolution: Recent Advances in cryoEM, Methods in Enzymology Series vol. 579 (Academic Press, Cambridge, MA, 2016).Google Scholar
Glaeser, R.M., J. Ultrastruct. Res. 36, 466 (1971).CrossRefGoogle Scholar
Jiang, N., Rep. Prog. Phys. 79, 016501 (2016).CrossRefGoogle Scholar
Egerton, R.F., Micron 119, 72 (2019).CrossRefGoogle Scholar
Peet, M.J., Henderson, R., Russo, C.J., Ultramicroscopy 203, 125 (2019).CrossRefGoogle Scholar
Glaeser, R.M., Methods Enzymol . 579, 20 (2016).Google Scholar
Reimer, L., Kohl, H., Transmission Electron Microscopy , 5th ed. (Springer, New York, 2008).Google Scholar
Egerton, R.F., Microsc. Res. Tech. 75, 1550 (2012).CrossRefGoogle Scholar
Li, Y., Pei, A., Yan, K., Sun, Y., Wu, C.-L., Joubert, L.-M., Chin, R., Koh, A.L., Yu, Y., Perrino, J., Butz, B., Chu, S., Cui, Y.., Science 358, 506 (2017).CrossRefGoogle Scholar
Zachman, M.J., Nature 560, 345 (2018).CrossRefGoogle Scholar
Wolf, S.G., Houben, L., Elbaum, M., Nat. Methods 11, 423 (2014).CrossRefGoogle Scholar
Juffmann, T., Koppell, S.A., Klopfer, B.B., Ophus, C., Glaeser, R.M. Kasevich, M.A., Sci. Rep. 7, 1699 (2017).CrossRefGoogle Scholar
Koppell, S.A., Mankos, M., Bowman, A.J., Israel, Y., Juffmann, T., Klopfer, B.B., Kasevich, M.A.., “Design for a 10 KeV Multipass Transmission Electron Microscope” (2019), arXiv:1904.11064.Google Scholar
Collins, S.M., Midgley, P.A., Ultramicroscopy 180, 133 (2017).CrossRefGoogle Scholar
Van den Broek, W., Reed, B.W., Beche, A., Verbeeck, J., Koch, C.T., Microsc. Microanal. 25 (Suppl. 2), 1686 (2019).CrossRefGoogle Scholar
Glaeser, R.M., McMullan, G., Faruqi, A.R., Henderson, R., Ultramicroscopy 111, 90 (2011).CrossRefGoogle Scholar
Scheres, S.H.W., Elife 3, e03665 (2014).CrossRefGoogle Scholar
Henderson, R., Russo, C.J., Microsc. Microanal. 25 (Suppl. 2), 984 (2019).CrossRefGoogle Scholar
Feist, A., Bach, N., Rubiano da Silva, N., Danz, T., Möller, M., Priebe, K.E., Domröse, T., Gatzmann, J.G., Rost, S., Schauss, J., Strauch, S., Bormann, R., Sivis, M., Schäfer, S., Ropers, C., Ultramicroscopy 176, 63 (2017).CrossRefGoogle Scholar
Jiang, N., Spence, J.C.H., Ultramicroscopy 113, 77 (2012).CrossRefGoogle Scholar
Chapman, H., Fromme, P., Barty, A., White, T.A., Kirian, R.A., Aquila, A., Hunter, M.S., Schulz, J., DePonte, D.P., Weierstall, U., Doak, R.B., Maia, F.R.N.C., Martin, A.V., Schlichting, I., Lomb, L., Coppola, N., Shoeman, R.L., Epp, S.W., Hartmann, R., Rolles, D., Rudenko, A., Foucar, L., Kimmel, N., Weidenspointner, G., Holl, P., Liang, M., Barthelmess, M., Caleman, C., Boutet, S., Bogan, M.J., Krzywinski, J., Bostedt, C., Bajt, S., Gumprecht, L., Rudek, B., Erk, B., Schmidt, C., Hömke, A., Reich, C., Pietschner, D., Strüder, L., Hauser, G., Gorke, H., Ullrich, J., Herrmann, S., Schaller, G., Schopper, F., Soltau, H., Kühnel, K.-U., Messerschmidt, M., Bozek, J.D., Hau-Riege, S.P., Frank, M., Hampton, C.Y., Sierra, R.G., Starodub, D., Williams, G.J., Hajdu, J., Timneanu, N., Seibert, M.M., Andreasson, J., Rocker, A., Jönsson, O., Svenda, M., Stern, S., Nass, K., Andritschke, R., Schröter, C.-D., Krasniqi, F., Bott, M., Schmidt, K.E., Wang, X., Grotjohann, I., Holton, J.M., Barends, T.R.M., Neutze, R., Marchesini, S., Fromme, R., Schorb, S., Rupp, D., Adolph, M., Gorkhover, T., Andersson, I., Hirsemann, H., Potdevin, G., Graafsma, H., Nilsson, B., Spence, J.C.H., Nature 460, 73 (2011).CrossRefGoogle Scholar
Egerton, R.F., Adv. Struct. Chem. Imaging 1, 1 (2015).CrossRefGoogle Scholar
Spence, J.C.H., Struct. Dyn. 4, 044027 (2017).CrossRefGoogle Scholar
Gerstel, M., Deane, C.M., Garman, E.F., J. Synchrotron Radiat. 22, 201 (2015).CrossRefGoogle Scholar
Warkentin, M., Hopkins, J.B., Badeau, R., Mulichak, A.M., Keefe, L.J., Thorne, R.E., J. Synchrotron Radiat. 20, 7 (2013).CrossRefGoogle Scholar
Egerton, R.F., Rauf, I., Ultramicroscopy 80, 247 (1999).CrossRefGoogle Scholar
Karuppasamy, M., Nejadasl, F.M., Vulovic, M., Kostera, A.J., Ravellia, R.B.G., J. Synchrotron Radiat. 18, 398 (2011).CrossRefGoogle Scholar
Egerton, R.F., Li, P., Malac, M., Micron 35, 399 (2004).CrossRefGoogle Scholar
Egerton, R.F., Qian, H., Microsc. Microanal. 25 (Suppl. 2), 992 (2019).CrossRefGoogle Scholar
Glaeser, R.M., Taylor, K.A., J. Microsc. 112, 127 (1978).CrossRefGoogle Scholar
Bullough, P., Henderson, R., Ultramicroscopy 21 , 223 (1987).CrossRefGoogle Scholar
Downing, K., Ultramicroscopy 24, 387 (1988).CrossRefGoogle Scholar
Jiang, X., Xuan, S., Spencer, R.K., Zuckermann, R.N., Downing, K.H., Balsara, N.P., Microsc. Microanal. 25 (Suppl. 2), 1356 (2019).CrossRefGoogle Scholar
Johnstone, D.N., Allen, C.S., Danaie, M., Copley, R.C.B., Brum, J., Kirkland, A.I., Midgley, P.A., Microsc. Microanal. 25 (Suppl. 2), 1746 (2019).CrossRefGoogle Scholar
Nannenga, B.L., Gonen, T., MRS Bull . 44 (12), xxx (2019).Google Scholar
Krumeich, F., Mueller, E., Wepf, R.A., Micron 49, 1 (2014).CrossRefGoogle Scholar
Close, R., Chen, Z., Shibata, N., Findlay, S.D., Ultramicroscopy 159, 124 (2015).CrossRefGoogle Scholar
Lazić, I., Bosch, E.G.T., Lazar, S., Ultramicroscopy 160, 265 (2016).CrossRefGoogle Scholar
Ophus, C., Microsc. Microanal. 25, 563 (2019).CrossRefGoogle Scholar
Wang, Y.C., Slater, T.J.A., Leteba, G.M., Roseman, A.M., Race, C.P., Young, N.P., Kirkland, A.I., Lang, C.I., Haigh, S.J., Nano Lett . 19, 732 (2019).CrossRefGoogle Scholar
Ilett, M., Brydson, R., Brown, A., Hondow, N., Micron 120, 35 (2019).CrossRefGoogle Scholar
Naganathanm, A.N., Munoz, V., J. Am. Chem. Soc. 127, 480 (2005).CrossRefGoogle Scholar
Geremia, S., Campagnolo, M., Demitri, N., Johnson, L.N., Structure 14, 393 (2016).CrossRefGoogle Scholar
Leary, R.K., Midgley, P.M., MRS Bull . 41, 531 (2016).CrossRefGoogle Scholar
Aoyama, K., Takagi, T., Hirase, A., Miyazawa, A., Ultramicroscopy 109, 70 (2008).CrossRefGoogle Scholar
Wolf, S.G., Elbaum, M., Methods Cell Biol . 152, 197 (2019).CrossRefGoogle Scholar
Humphreys, C.J., Bullough, T.J., Devenish, R.W., Maher, D.M., Turner, P.S., “Electron Beam Nano-Etching in Oxides, Fluorides, Metals and Semiconductors,” in Scanning Microscopy 4, Johari, O., Ed. (Scanning Microscopy International, Chicago, 1990), pp. 185192.Google Scholar
Krivanek, O.L., Dellby, N., Hachtel, J.A., Idrobo, J.-C., Hotz, M.T., Plotkin-Swing, B., Bacon, N.J., Bleloch, A.L., Corbin, G.J., Hoffman, M.V., Meyer, C.E., Lovejoy, T.C., Ultramicroscopy 203, 60 (2019).CrossRefGoogle Scholar
Hachtel, J.A., Huang, J., Popovs, I., Jansone-Popova, S., Keum, J.K., Jakowski, J., Lovejoy, T.C., Dellby, N., Krivanek, O.L., Idrobo, J.C., Science 363, 525 (2019).CrossRefGoogle Scholar
Brilot, A.F., Chen, J.Z., Cheng, A., Pan, J., Harrison, S.C., Potter, C.S., Carragher, B., Henderson, R., Grigorieff, N., J. Struct. Biol. 177, 630 (2011).CrossRefGoogle Scholar
Henderson, R., Glaeser, R.M., Ultramicroscopy 16, 139 (1985).CrossRefGoogle Scholar
Russo, C.J., Passmore, L.A., Science 346, 1377 (2014).CrossRefGoogle Scholar
Li, X., Mooney, P., Zheng, S., Booth, C.R., Braunfeld, M.B., Gubbens, S., Agard, D.A., Cheng, Y., Nat. Methods 10, 584 (2013).CrossRefGoogle Scholar
Bai, X., Fernandez, I.S., McMullan, G., Scheres, S.H.W., Elife 2, e00461 (2013).CrossRefGoogle Scholar
Dubochet, J., Knapek, E., PLOS Biol . 16, e2005550 (2018).CrossRefGoogle Scholar
Atakisi, H., Conger, L., Moreau, D.W., Thorne, R.E., IUCrJ 6, 1 (2019).CrossRefGoogle Scholar