Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-24T08:51:21.667Z Has data issue: false hasContentIssue false

Crystal Growth from the Melt under External Force Fields

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

The present and future demands of industrial bulk crystal growth from the melt are concentrated on improved crystal quality, increased yield, and reduced costs. To meet these challenges, the size of the melt volume must be markedly increased. As a result, violent convective perturbations appear within the melts due to turbulent heat and mass flows. They disturb the single crystal growth and give rise to compositional inhomogeneities. The application of external force fields is an effective method to dampen and control these flows. After introducing different stabilizing variants, such as constant and accelerated melt rotation, mechanical vibrations, and electric current, this article focuses on the use of magnetic fields. Nonsteady fields became very popular because, in this case, the needed strength of the magnetic induction is much lower than for steady fields. A new low-energy low-cost technology that combines heat and magnetic field generation in one module placed close to the melt crucible is introduced.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Müller, G., Fundamentals of Melt Growth, in Perspectives on Inorganic, Organic, and Biological Crystal Growth: From Fundamentals to Applications, Skowronski, M., DeYoreo, J.J., Wang, C.A., Eds. (AIP Conference Proc. 916, New York, USA, 2007) pp. 333.Google Scholar
2Brice, J.C., Rudolph, P., Crystal Growth, in Ullmann's Encyclopedia of Industrial Chemistry, 7th edition, electronic release (Wiley-VCH, Weinheim, Germany, 2007).Google Scholar
3Hurle, D.T.J., Series, R.W., Use of a Magnetic Field in Melt Growth, in Handbook of Crystal Growth, Vol. 2a, Hurle, D.T.J., Ed. (Elsevier, North-Holland, 1994) pp. 259285.Google Scholar
4Kakimoto, K., Modeling of Fluid Dynamics in the Czochralski Growth of Semiconductor Crystals, in Crystal Growth—from Fundamentals to Technology, Müller, G., Metois, J.-J., Rudolph, P., Eds. (Elsevier, Amsterdam, 2004) pp. 169186.CrossRefGoogle Scholar
5Dold, P., Benz, K.W., Prog. Cryst. Growth Charact. Mater. 38, 7 (1999).Google Scholar
6Spitzer, K., Prog. Cryst. Growth Charact. Mater. 38, 39 (1999).Google Scholar
7Price, M.W., Andrews, R.N., Su, C.H., Lehoczky, S.L., Szofran, F.R., J. Cryst. Growth 137, 201 (1994).Google Scholar
8Moreno, A., Quiroz-Garcia, B., Yokaichiya, F., Stojanoff, V., Rudolph, P., Cryst. Res. Technol. 42, 231 (2007).CrossRefGoogle Scholar
9Muiznieks, A., Krauze, A., Nacke, B., J. Cryst. Growth 303, 211 (2007).CrossRefGoogle Scholar
10Tiller, W.A., Jackson, K.A., Rutter, J.W., Chalmers, B., Acta Metall. 1, 428 (1953).CrossRefGoogle Scholar
11Müller, G., Neumann, G., Weber, W., J. Cryst. Growth 119, 8 (1992).Google Scholar
12Regel, L.L., Wilcox, W.R., Processing by Centrifugation (Springer, Heidelberg, Germany, 2001).Google Scholar
13Wilke, K.-Th., Bohm, J., Kristallzüchtung (Verlag Harri Deutsch-Thun, Frankfurt/Main, Germany, 1989).Google Scholar
14Levich, V.G., Physicochemical Hydrodynamics (Prentice-Hall, Englewood Cliffs, NJ, 1961).Google Scholar
15Rossby, H.T., J. Fluid Mech. 36, 309 (1969).CrossRefGoogle Scholar
16Scheel, H.J., Schulz-DuBois, E.O., J. Cryst. Growth 8, 304 (1971).Google Scholar
17Rytz, D., Scheel, H.J., J. Cryst. Growth 59, 468 (1982).Google Scholar
18Capper, P., Prog. Cryst. Growth Charact. 28, 1 (1994).CrossRefGoogle Scholar
19Capper, P., Use of Forced Mixing via the Accelerated Crucible Rotation Technique (ACRT) in Bridgman Growth of Cadmium Mercury Telluride (CMT), in Crystal Growth Technology, Scheel, H.J., Capper, P., Eds. (Wiley-VCH, Weinheim, Germany, 2008) pp. 283306.CrossRefGoogle Scholar
20Distanov, V.E., Nenashev, B.G., Kirdyashkin, A.G., Serboulenko, M.G., J. Cryst. Growth 235, 457 (2002).CrossRefGoogle Scholar
21Liu, Y.C., Roux, B., Lan, C.W., J. Cryst. Growth 304, 236 (2007).Google Scholar
22Bloedner, R.U., Gille, P., J. Cryst. Growth 130, 181 (1993).Google Scholar
23Gille, P., Presia, M., Bloedner, R.U., Puhlmann, N., J. Cryst. Growth 130, 188 (1993).Google Scholar
24Bairava Ganesh, R., Matsuo, H., Kangawa, Y., Arafune, K., Ohshita, Y., Yamaguchi, M., Kakimoto, K., Cryst. Growth Des. 8, 2525 (2008).Google Scholar
25Rosenberger, F., Fundamentals of Crystal Growth I (Springer-Verlag, Berlin, Germany, 1979).CrossRefGoogle Scholar
26Hurle, D.T.J., Jakeman, E., J. Cryst. Growth 5, 227 (1969).Google Scholar
27Müller, G., Ostrogorsky, A., Convection in the Melt Growth, in Handbook of Crystal Growth, Vol. 2b, Hurle, D.T.J., Eds. (North Holland, Amsterdam, The Netherlands, 1994) pp. 709819.Google Scholar
28Liu, W.S., Wolf, M.F., Elwell, D., Feigelson, R.S., J. Cryst. Growth 82, 589 (1987).Google Scholar
29Lu, Y.C., Shiau, J.J., Feigelson, R.S., Route, R.K., J. Cryst. Growth 102, 807 (1990).Google Scholar
30Zharikov, E.V., Prihodko, L.V., Storozjev, N.R., J. Cryst. Growth 99, 910 (1990).Google Scholar
31Fedyushkin, A., Bourago, N., Polezhaev, V., Zharikov, E., J. Cryst. Growth 275, e1557 (2005).CrossRefGoogle Scholar
32Dold, P., Control of Fluid Flow and Segregation in Semiconductor Crystal Growth from the Melt, thesis, University of Freiburg (2005).Google Scholar
33Kapustin, A.P., Kovaljunajte, V.E., Kristallografija 7, 613 (1962).Google Scholar
34Bates, H.E., Weinstein, M., J. Electrochem. Soc. 114, 259 (1967).Google Scholar
35Kozhemyakin, G.N., Kosushkin, V.G., Kurochkin, S.Y., J. Cryst. Growth 121, 240 (1992).Google Scholar
36Kozhemyakin, G.N., J. Cryst. Growth 257, 237 (2003).Google Scholar
37Pfann, W.G., Wagner, R.S., Trans. Met. Soc. AIME 224, 1139 (1962).Google Scholar
38Pfann, W.G., Zone Melting, 2nd edition (Wiley, New York, 1966).Google Scholar
39Wang, X., Ma, N., Bliss, D.F., Iseler, G.W., Int. J. Heat Mass Transfer 49, 3429 (2006).Google Scholar
40Holmes, D.E., Gatos, H.C., J. Appl. Phys. 52, 2971 (1981).Google Scholar
41Jasinski, T., Witt, A.F., J. Cryst. Growth 71, 295 (1985).Google Scholar
42Golubev, L.V., Egorov, A.V., Novikov, S.V., Shmartsev, Yu.V., J. Cryst. Growth 146, 277 (1995).Google Scholar
43Reiche, P., Bohm, J., Hermoneit, B., Rudolph, P., Schalge, R., Schultze, D., J. Cryst. Growth 108, 759 (1991).CrossRefGoogle Scholar
44Kim, K.M., Witt, A.F., Gatos, H.C., J. Elecrochem. Soc. 120, 1119 (1973).Google Scholar
45Brush, L.N., J. Cryst. Growth 310, 4238 (2008).CrossRefGoogle Scholar
46Series, R.W., Hurle, D.T.J., J. Cryst. Growth 113, 305 (1991).Google Scholar
47Utech, H.P., Flemings, M.C., J. Appl. Phys. 37, 2021 (1966).CrossRefGoogle Scholar
48Chedzey, H.A., Hurle, D.T.J., Nature 210, 933 (1966).Google Scholar
49Dorfman, J.G., Litjo s vraschtscheniem (rotational casting), (Metallurgizdat, Moscva, USSR, 1934).Google Scholar
50Mullin, J.B., Hulme, K.F., J. Electron. Control 4, 170 (1958).Google Scholar
51Gondi, P., Scacciati, G., Nuova Cimento 21, 829 (1961).Google Scholar
52Johnston, W.C., Tiller, W., Trans. AIME 221, 331 (1961); 224, 214 (1962).Google Scholar
53Hoshi, K., Suzuki, T., Okubo, Y., Isawa, N., CZ silicon crystal grown in transverse magnetic fields, in Extended Abstracts Electrochem. Soc. Spring Meeting V01.80–1, (Electrochemical Society, Pennington, NJ, 1980) pp. 811815.Google Scholar
54Suzuki, T., Isawa, N., Okubo, Y., Hoshi, K., Czochralski silicon-crystals grown in a transverse magnetic field, in Semiconductor Silicon 1981, Huff, H.R., Kriegler, R.J., Takeishi, Y., Eds. (Electrochemical Society, Pennington, NJ, 1981) pp. 213216.Google Scholar
55Terashima, K., Fukuda, T., J. Cryst. Growth 63, 423 (1983).Google Scholar
56Hofmann, D., Mosel, M., Müller, G., Influence of a Vertical Magnetic Field on the LEC Growth and Properties of 3-inch s.i. InP Crystals, in Proc. of the 5th Conf. on Semi-Insulating III-V Materials, Malmö 1988, Grossmann, G., Ledebo, L., Eds. (Hilger, Bristol, UK, 1988) pp. 429434.Google Scholar
57Ozawa, S., Kimura, T., Kobayashi, J., Fukuda, T., Appl. Phys. Lett. 50, 329 (1987).Google Scholar
58Bliss, D.F., Hilton, R.M., Bachowski, S., Adamski, J.A., J. Electron. Mater. 20, 967 (1991).Google Scholar
59Shiraishi, Y., Takano, K., Matsubara, J., Iida, T., Takase, N., Machida, N., Kuramoto, M., Yamagishi, H., J. Cryst. Growth 229, 17 (2001).CrossRefGoogle Scholar
60Cröll, A., Szofran, F.R., Dold, P., Benz, K.W., Lehoczky, S.L., J. Cryst. Growth 183, 554 (1998).CrossRefGoogle Scholar
61Park, Y.J., Min, S.K., Hahn, S.H., Yoon, J.K., J. Cryst. Growth 154, 10 (1995).Google Scholar
62Kohda, H., Yamada, K., Nakanishi, H., Kobayashi, T., Osaka, J., Hoshikawa, K., J. Cryst. Growth 71, 813 (1985).Google Scholar
63Kim, K.M., Smetana, P., J. Appl. Phys. 58, 2731 (1985).CrossRefGoogle Scholar
64Yi, K.W., Kakimoto, K., Niu, Z.G., Eguchi, M., Noguchi, H., Nakamura, S., Mukai, K., J. Electrochem. Soc. 143, 722 (1996).CrossRefGoogle Scholar
65Series, R.W., J. Cryst. Growth 7, 92 (1989).Google Scholar
66Hirata, H., Hoshikawa, K., J. Cryst. Growth 98, 777 (1989).Google Scholar
67Watanabe, M., Eguchi, M., Wang, W., Hibiya, T., Kuragaki, S., J. Cryst. Growth 237, 1657 (2002).Google Scholar
68Vizman, D., Watanabe, M., Friedrich, J., Müller, G., J. Cryst. Growth 303, 221 (2007).Google Scholar
69Miyazawa, Y., Morita, S., Sekiwa, H., J. Cryst. Growth 166, 286 (1996).Google Scholar
70de Rango, P., Lee, M., Lejay, P., Sulpice, A., Tournier, R., Ingold, M., Germi, P., Pernet, M., Nature 349, 770 (1991).Google Scholar
71Ma, Y., Watanabe, K., Awaji, S., Motokawa, M., Appl. Phys. Lett. 77, 192 (2000).Google Scholar
72Mwaba, M.S., Gu, J., Golriz, M.R., J. Cryst. Growth 303, 381 (2007).Google Scholar
73Wang, J., Zhang, K., Peng, Z., Chen, Q., J. Cryst. Growth 266, 500 (2004).Google Scholar
74Sazaki, G., Yoshida, E., Komatsu, H., Nakada, T., Miyashita, S., Watanabe, K., J. Cryst. Growth 173, 231 (1997).Google Scholar
75Ataka, M., Katoh, E., Wakayama, N.I., J. Cryst. Growth 173, 592 (1997).Google Scholar
76Hirata, H., Hoshikawa, K., Inoue, N., J. Cryst. Growth 70, 330 (1984).Google Scholar
77Gelfgat, Yu. M., Gorbunov, L.A., Magnetohydrodynamics 31, 207 (1995).Google Scholar
78Liu, L., Kakimoto, K., Int. J. Heat Mass Transfer 48, 4481, 4492 (2005).Google Scholar
79Kalaev, V.V., J. Cryst. Growth 303, 203 (2007).Google Scholar
80Krauze, A., Muiznieks, A., Muhlbauer, A., Wetzel, Th., Ammon, W.v., J. Cryst. Growth 262, 157 (2004).Google Scholar
81Ozoe, H., Iwamoto, M., J. Cryst. Growth 142, 236 (1994).Google Scholar
82Kakimoto, K., Eguchi, M., Watanabe, M., Hibiya, T., J. Cryst. Growth 102, 16 (1990).Google Scholar
83Tanaka, M., Hasebe, M., Saito, N., J. Cryst. Growth 180, 487 (1997).Google Scholar
84Shaskow, Y.M., Shulebina, N.Y., Fiz. Khim. Obrab. Mater. 1, 34 (1972).Google Scholar
85Abritska, M.Y., Gorbunov, L.A., Magnetohydrodynamics 28, 398 (1992).Google Scholar
86Ono, N., Trapaga, G., J. Electrochem. Soc. 144, 764 (1997).Google Scholar
87Mitric, A., Duffar, Th., J. Cryst. Growth 310, 1511 (2008).Google Scholar
88Galindo, V., Gerbeth, G., Von Ammon, W., Tomzig, E., Virbulis, J., Crystal Growth Melt Flow Control by Means of Magnetic Fields, in 4th Int. PAMIR Conf. on Magnetohydrodynamics at Dawn of Third Millenium (Presq'ile de Giens, France, 2000) pp. 725730.Google Scholar
89Schwesig, P., Hainke, M., Friedrich, J., Mueller, G., J. Cryst. Growth 266, 224 (2004).Google Scholar
90Yesilyurt, S., Motakef, S., Grugel, R., Mazuruk, K., J. Cryst. Growth 263, 80 (2004).Google Scholar
91Galindo, V., Grants, I., Lantzsch, R., Pätzold, O., Gerbeth, G., J. Cryst. Growth 303, 258 (2007).Google Scholar
92Lantzsch, R., Grants, I., Galindo, V., Pätzold, O., Gerbeth, G., Stelter, M., Cröll, A., Magnetohydrodynamics 42, 445 (2006).Google Scholar
93Lyubimova, T.P., Cröll, A., Dold, P., Khlybov, O.A., Fayzrakhmanova, I.S., J. Cryst. Growth 266, 404 (2004).Google Scholar
94Wetzel, Th., Fortschr.-Ber. VDI, 9 (328), 1 (2001).Google Scholar
95Lantzsch, R., Grants, I., Pätzold, O., Stelter, M., Gerbeth, G., J. Cryst. Growth, 310, 1518 (2008).Google Scholar
96Fischer, B., Friedrich, J., Kupfer, C., Vizman, D., Müller, G., Experimantal and Numerical Analysis of the Influence of a Rotating Magnetic Field on Convection in Rayleigh-Bénard Configurations, in Transfer Phemomena in Magnetohydrodynamic and Electroconducting Flows, Alemany, A., Marty, P., Thibault, J.P., Eds. (Kluwer Academic Publishers, 1999) pp. 279294.Google Scholar
97Klein, O., Druet, P.-E., Lechner, Ch., Philip, P., Sprekels, J., Frank-Rotsch, Ch., Kieβling, F.-M., Miller, W., Rehse, U., Rudolph, P., J. Cryst. Growth 310, 1523 (2008).Google Scholar
98Brückner, F.U., Schwerdtfeger, K., J. Cryst. Growth 139, 351 (1994).Google Scholar
99Rudolph, P., J. Cryst. Growth 310, 1298 (2008).Google Scholar
100Frank-Rotsch, Ch., Jockel, D., Ziem, M., Rudolph, P., J. Cryst. Growth 310, 1505 (2008).Google Scholar
101Rudolph, P., Frank-Rotsch, Ch., Kiessling, F.M.Miller, W., Rehse, U., Klein, O., Lechner, Ch., Sprekels, J., Nacke, B., Kasjanow, H., Lange, P., Ziem, M., Lux, B., Czupalla, M., Root, O., Trautmann, V., Bethin, G., Crystal Growth in Heater-Magnet Modules—From Concept to Use, in Proceedings of the International Scientific Colloquium “Modelling for Electromagnetic Processing” (MEP 08), Hanover, October 27–29, 2008, pp. 7984.Google Scholar
102Mühe, A., Altekrüger, B., Vonhoff, A., patent descriptions DE 10349339 A1 (2003); US 0087125 A1 (2004).Google Scholar
103Frank-Rotsch, Ch., Rudolph, P., J. Cryst. Growth, February 10, 2009, doi:10.1016/j.jcrysgro.2009.01.139.Google Scholar