Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-30T18:49:17.311Z Has data issue: false hasContentIssue false

Cross-Sectional Scanning Tunneling Microscopy of Semiconductor Heterostructures

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

As characteristic dimensions in semiconductor devices continue to shrink and as advanced heterostructure devices increase in prominence, the ability to characterize structure and electronic properties in semiconductor materials and device structures at the atomic to nanometer scales has come to be of outstanding and immediate importance. Phenomena such as atomic-scale roughness of heterojunction interfaces, compositional ordering in semiconductor alloys, discreteness and spatial distribution of dopant atoms, and formation of self-assembled nanoscale structures can exert a profound influence on material properties and device behavior. The relationships between atomic-scale structure, epitaxial growth or processing conditions, and ultimately material properties and device behavior must be understood for realization and effective optimization of a wide range of semiconductor heterostructure and nanoscale devices.

Cross-sectional scanning tunneling microscopy (STM) has emerged as a unique and powerful tool in the study of atomic-scale properties in III-V compound semiconductor heterostructures and of nanometer-scale structure and electronic properties in Si micro-electronic devices, offering unique capabilities for characterization that in conjunction with a variety of other, complementary experimental methods are providing new and important insights into material and device properties at the atomic to nanometer scale. In this article, we describe the basic experimental techniques involved in cross-sectional STM and give a few representative applications from our work that illustrate the ability, using cross-sectional STM in conjunction with other experimental techniques, to probe atomic-scale features in the structure of semiconductor heterojunctions and to correlate these features with epitaxial-growth conditions and device behavior.

Type
Nanoscale Characterization of Materials
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Muralt, P. and Pohl, D.W., Appl. Phys. Lett. 48 (1986) p. 514.CrossRefGoogle Scholar
2.Salemink, H.W.M., Meier, H.P., Ellialtioglu, R., Gerritsen, J.W., and Muralt, P.R.M., Appl. Phys. Lett. 54 (1989) p. 1112.CrossRefGoogle Scholar
3.Smith, A.R., Gwo, S., Sadra, K., Shih, Y.C., Streetman, B.G., and Shih, C.K., J. Vac. Sci. Technol. B 12 (1994) p. 2610.CrossRefGoogle Scholar
4.Zheng, J.F., Walker, J.D., Salmeron, M.B., and Weber, E.R., Phys. Rev. Lett. 72 (1994) p. 2414.CrossRefGoogle Scholar
5.Feenstra, R.M., Collins, D.A., Ting, D.Z-Y., Wang, M.W., and McGill, T.C., Phys. Rev. Lett. 72 (1994) p. 2749.CrossRefGoogle Scholar
6.Lew, A.Y., Yu, E.T., Chow, D.H., and Miles, R.H., Appl. Phys. Lett. 65 (1994) p. 201.CrossRefGoogle Scholar
7.Skala, S.L., Wu, W., Tucker, J.R., Lyding, J.W., Seabaugh, A., Beam, E.A. III, and Jovanovic, D., J. Vac. Sci. Technol. B 13 (1995) p. 660.CrossRefGoogle Scholar
8.Kordic, S., Van Loenen, E.J., Dijkkamp, D., Hoeven, A.J., and Moraal, H.K., J. Vac. Sci. Technol. A 8 (1990) p. 549.CrossRefGoogle Scholar
9.Yu, E.T., Barmak, K., Ronsheim, P., Johnson, M.B., McFarland, P., and Halbout, J-M., J. Appl. Phys. 79 (1996) p. 2115.CrossRefGoogle Scholar
10.Feenstra, R.M., Stroscio, J.A., Tersoff, J., and Fein, A.P., Phys. Rev. Lett. 58 (1987) p. 1192.CrossRefGoogle Scholar
11.Lutz, M.A., Feenstra, R.M., and Chu, J.O., Surf. Sci. 328 (1995) p. 215.CrossRefGoogle Scholar
12.Van Loenen, E.J., Dijkkamp, D., and Hoeven, A.J., J. Micros. 152 (1988) p. 487.CrossRefGoogle Scholar
13.Dijkkamp, D., Van Loenen, E.J., Hoeven, A.J., and Dieleman, J., J. Vac. Sci. Technol. A 8 (1990) p. 218.CrossRefGoogle Scholar
14.Tuttle, G., Kroemer, H., and English, J.H., J. Appl. Phys. 67 (1990) p. 3032.CrossRefGoogle Scholar
15.Brar, B., Ibbetson, J., Kroemer, H., and English, J.H., Appl. Phys. Lett. 64 (1994) p. 3392.CrossRefGoogle Scholar
16.Chow, D.H., Miles, R.H., and Hunter, A.T., J. Vac. Sci. Technol. B 10 (1992) p. 888.CrossRefGoogle Scholar
17.Lew, A.Y., Yu, E.T., and Zhang, Y-H., J. Vac. Sci. Technol. B 14 (1996) p. 2940.CrossRefGoogle Scholar
18.Zhang, Y-H. and Chow, D.H., Appl. Phys. Lett. 65 (1994) p. 3239.CrossRefGoogle Scholar
19.Lew, A.Y., Zuo, S.L., Yu, E.T., and Miles, R.H., Appl. Phys. Lett. 70 (1997) p. 75.CrossRefGoogle Scholar
20.Goodnick, S.M., Ferry, D.K., Wilmsen, C.W., Liliental, Z., Fathy, D., and Krivanek, O., Phys. Rev. B 32 (1985) p. 8171.CrossRefGoogle Scholar
21.Pashley, M.D., Haberern, K.W., and Gaines, J.M., Appl. Phys. Lett. 58 (1991) p. 406.CrossRefGoogle Scholar
22.Sudijono, J., Johnson, M.D., Snyder, C.W., Elowitz, M.B., and Orr, B.G., Phys. Rev. Lett. 69 (1992) p. 2811.CrossRefGoogle Scholar
23.Heller, E.J. and Lagally, M.G., Appl. Phys. Lett. 60 (1992) p. 2675.CrossRefGoogle Scholar
24.Pond, K., Maboudian, R., Bressler-Hill, V., Leonard, D., Wang, X-S., Self, K., Weinberg, W.H., and Petroff, P.M., J. Vac. Sci. Technol. B 11 (1993) p. 1374.CrossRefGoogle Scholar
25.Miles, R.H., Schulman, J.N., Chow, D.H., and McGill, T.C., Semicond. Sci. Technol. 8 (1993) p. S102.CrossRefGoogle Scholar
26.Wang, M.W., Collins, D.A., McGill, T.C., and Grant, R.W., J. Vac. Sci. Technol. B 11 (1993) p. 1418.CrossRefGoogle Scholar
27.Collins, D.A., Wang, M.W., Grant, R.W., and McGill, T.C., J. Appl. Phys. 75 (1994) p. 259.CrossRefGoogle Scholar
28.Miles, R.H., Chow, D.H., and Hamilton, W.J., J. Appl. Phys. 71 (1992) p. 211.CrossRefGoogle Scholar