Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-24T03:08:41.297Z Has data issue: false hasContentIssue false

Cracklike Processes within Frictional Motion: Is Slow Frictional Sliding Really a Slow Process?

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

The dynamics of frictional motion have been studied for hundreds of years, yet many aspects of these important processes are not understood. First described by Coulomb and Amontons as the transition from static to dynamic friction, the onset of frictional motion is central to fields as diverse as physics, tribology, mechanics of earthquakes, and fracture. We review recent studies in which fast (real-time) visualization of the true contact area along a rough spatially extended interface separating two blocks of like material has revealed the detailed dynamics of how this transition takes place. The onset of motion is preceded by a discrete sequence of rapid cracklike precursors, which are initiated at shear levels that are well below the threshold for static friction. These precursors systematically increase in spatial extent with the applied shear force and leave in their wake a significant redistribution of the true contact area. Their cumulative effect is such that, just prior to overall sliding of the blocks, a highly inhomogeneous contact profile is established along the interface. At the transition to overall motion, these precursor cracks trigger both slow propagation modes and modes that travel faster than the shear wave speed. Overall frictional motion takes place only when either the slow propagation modes or additional shear cracks excited by these slow modes traverse the entire interface. Surprisingly, in the resulting stick–slip motion, the surface contact profile retains the profile built up prior to the first slipping event. These results suggest a fracture-based mechanism for stick–slip motion that is qualitatively different from other descriptions.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Carpick, R.W., Ogletree, D.F., Salmeron, M., J. Colloid Interface Sci. 211, 395 (1999).Google Scholar
2.Dieterich, J.H., Tectonophysics 211, 115 (1992).Google Scholar
3.Lapusta, N., Rice, J.R., J. Geophys. Res. [Solid Earth] 108, 2205 (2003).Google Scholar
4.Ben-Zion, Y., J. Mech. Phys. Solids 49, 2209 (2001).CrossRefGoogle Scholar
5.Ohnaka, M., Earth Planets Space 56, 773 (2004).Google Scholar
6.Scholz, C.H., Nature 391, 37 (1998).CrossRefGoogle Scholar
7.Thompson, B.D., Young, R.P., Lockner, D.A., Geophys. Res. Lett. 32, L10304 (2005).Google Scholar
8.Luan, B.Q., Robbins, M.O., Nature 435, 929 (2005).Google Scholar
9.Gerde, E., Marder, M., Nature 413, 285 (2001).Google Scholar
10.Urbakh, M., Klafter, J., Gourdon, D., Israelachvili, J., Nature 430, 525 (2004).CrossRefGoogle ScholarPubMed
11.Persson, B.N.J., Sliding Friction Physical Principles and Applications (Springer-Verlag, New York, ed. 2, 2000).CrossRefGoogle Scholar
12.Rice, J.R., Ruina, A.L., J. Appl. Mech. 50, 343 (1983).Google Scholar
13.Ruina, A., J. Geophys. Res. 88, 359 (1983).Google Scholar
14.Dieterich, J., J. Geophys. Res. 84, 2161 (1979).Google Scholar
15.Marone, C., Annu. Rev. Earth Planet. Sci. 26, 643 (1998).Google Scholar
16.Kilgore, B.D., Blanpied, M.L., Dieterich, J.H., Geophys. Res. Lett. 20, 903 (1993).CrossRefGoogle Scholar
17.Baumberger, T., Berthoud, P., Caroli, C., Phys. Rev. B 60, 3928 (1999).CrossRefGoogle Scholar
18.Caroli, C., Baumberger, T., Bureau, L., J. Phys. IV 12, 269 (2002).Google Scholar
19.Bowden, F.P., Tabor, D., The Friction and Lubrication of Solids (Oxford University Press, New York, ed. 2, 2001).Google Scholar
20.Dieterich, J.H., Kilgore, B.D., Pure Appl. Geophys. 143, 283 (1994).Google Scholar
21.Ovcharenko, A., Halperin, G., Etsion, I., Wear 264, 1043 (2008).CrossRefGoogle Scholar
22.Bureau, L., Baumberger, T., Caroli, C., Eur. Phys. J. E 19, 163 (2006).Google Scholar
23.Rubinstein, S., Cohen, G., Fineberg, J., Phys. Rev. Lett. 96, 256103 (2006).CrossRefGoogle Scholar
24.Freund, L.B., Dynamic Fracture Mechanics (Cambridge University Press, New York, 1990).Google Scholar
25.Fineberg, J., Marder, M., Phys. Rep. 313, 2 (1999).Google Scholar
26.Rosakis, A.J., Samudrala, O., Singh, R.P., Shukla, A., J. Mech. Phys. Solids 46, 1789 (1998).CrossRefGoogle Scholar
27.Rosakis, A.J., Samudrala, O., Coker, D., Science 284, 1337 (1999).Google Scholar
28.Gao, H.J., Huang, Y.G., Abraham, F.F., J. Mech. Phys. Solids 49, 2113 (2001).CrossRefGoogle Scholar
29.Needleman, A., J. Appl. Mech.: Trans. ASME 66, 847 (1999).Google Scholar
30.Rubinstein, S.M., Cohen, G., Fineberg, J., Nature 430, 1005 (2004).Google Scholar
31.Rubinstein, S.M., Shay, M., Cohen, G., Fineberg, J., Int. J. Fract. 140, 201 (2006).Google Scholar
32.Rubinstein, S.M., Cohen, G., Fineberg, J., Phys. Rev. Lett. 98, 226103 (2007).Google Scholar
33.Freund, L.B., J. Geophys. Res. 84, 2199 (1979).CrossRefGoogle Scholar
34.Rosakis, A.J., Samudrala, O., Coker, D., Mater. Res. Innov. 3, 236 (2000).Google Scholar
35.Xia, K.W., Rosakis, A.J., Kanamori, H., Science 303, 1859 (2004).Google Scholar
36.Reches, Z., Lockner, D.A., J. Geophys. Res. [Solid Earth] 99, 18159 (1994).Google Scholar
37.Falk, M.L., Langer, J.S., Phys. Rev. E 57, 7192 (1998).Google Scholar
38.Rottler, J., Robbins, M.O., Phys. Rev. Lett. 95 (2005).Google Scholar
39.Lapusta, N., Rice, J.R., Ben-Zion, Y., Zheng, G.T., J. Geophys. Res. [Solid Earth] 105, 23765 (2000).Google Scholar
40.Ohnaka, M., Pure Appl. Geophys. 161, 1915 (2004).CrossRefGoogle Scholar
41.Kanamori, H., Stewart, G.S., J. Geophys. Res. 83, 3427 (1978).Google Scholar
42.Das, S., Pure Appl. Geophys. 160, 579 (2003).CrossRefGoogle Scholar
43.Ohnaka, M., Shen, L.F., J. Geophys. Res. [Solid Earth] 104, 817 (1999).Google Scholar
44.Ma, S.L., He, C.R., Tectonophysics 337, 135 (2001).CrossRefGoogle Scholar
45.Brace, W.F., Byerlee, J.D., Science 153, 990 (1966).Google Scholar
46.Bouchon, M., Bouin, M.P., Karabulut, H., Toksöz, M.N., Dietrich, M., Rosakis, A., Geophys. Res. Lett. 28, 2723 (2001).Google Scholar
47.Aagaard, B.T., Heaton, T.H., Bull. Seismol. Soc. Am. 94, 2064 (2004).CrossRefGoogle Scholar
48.Dunham, E.M., J. Geophys. Res. [Solid Earth] 112 (2007).CrossRefGoogle Scholar
49.Liu, Y., Lapusta, N., J. Mech. Phys. Solids 56, 25 (2008).CrossRefGoogle Scholar
50.Beroza, G.C., Jordan, T.H., J. Geophys. Res. [Solid Earth Planets] 95, 2485 (1990).CrossRefGoogle Scholar
51.Abercrombie, R.E., Ekstrom, G., J. Geophys. Res. [Solid Earth] 108 (2003).Google Scholar
52.Brudzinski, M.R., Allen, R.M., Geology 35, 907 (2007).Google Scholar
53.Ellsworth, W.L., Beroza, G.C., Geophys. Res. Lett. 25, 401 (1998).Google Scholar
54.Ihmle, P.F., Jordan, T.H., Science 266, 1547 (1994).CrossRefGoogle Scholar
55.Kanamori, H., Proc. Jpn. Acad., Ser. B, Phys. Biol. Sci. 80, 297 (2004).CrossRefGoogle Scholar
56.Melbourne, T.I., Webb, F.H., Science 300, 1886 (2003).Google Scholar
57.Miller, M.M., Melbourne, T., Johnson, D.J., Sumner, W.Q., Science 295, 2423 (2002).CrossRefGoogle Scholar