Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-02T18:53:05.219Z Has data issue: false hasContentIssue false

Copper Etching: New Chemical Approaches

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

There is a tremendous demand for improved performance and speed in consumer electronics that is likely to continue as new applications and developments occur. This demand necessitates a reduction in the critical dimensions and an increase in the density of devices in microelectronic circuits. As a result, new materials must be considered for integration into microelectronics technology. In particular, the metal wiring or interconnects that connect different components in silicon-based semiconductor devices is a subject of great interest. As the dimensions of transistors shrink below the 0.5 μm level, their speed will become limited by the delays in the existing interconnect material, Al-Si-Cu alloy (p ~ 3 μΩ cm). Therefore, to avoid problems associated with RC (“resistance/capacitance”) time delays and voltage drops, it will be necessary to construct interconnections of materials that possess lower resistivities, resistance to electromigration and hillock formation, and resistance to diffusion into other materials (see Table I).

A number of materials are possible candidates to replace the Al-Si-Cu alloy, including W, Ag, Au, and Cu. Tungsten has excellent resistance to electromigration and hillock formation, but has higher resistivity compared with the Al-Si-Cu alloy. Thus, applications of W are likely to be found where short interconnection distances are necessary. Silver has the lowest resistivity of all metals, but is easily corroded and diffuses rapidly into many materials used in semiconductor devices. However, some specific applications for silver are viable, such as the formation of contacts on ceramic superconductors. Gold has a lower resistivity than the Al-Si-Cu alloy and is inert to chemical corrosion. As a result Au is used where device reliability is the primary concern-for example, for wiring in GaAs-based semiconductors and electrical contacts in packaging.

Type
Copper Metallization
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Pai, P.L., Ting, C.H., Chiang, C., Wei, C-S., and Fraser, D.B. in Tungsten and Other Advanced Metals for VLSI/ULSI Applications V, edited by Wong, S.S. and Furukawa, S. (Mater. Res. Soc. Symp. Proc. V5, Pittsburgh, PA, 1990) p. 359.Google Scholar
2.Awaya, N. and Arita, Y., J. Electron. Mater. 21 (1992) p. 959.CrossRefGoogle Scholar
3.Hampden-Smith, M.J. and Kodas, T.T., Chemical Aspects of Chemical Vapor Deposition for Metallization, Verlag, to be published, 1993.Google Scholar
4.Driesburg, D.E. and Castel, E.D., J. Met. (1989) p. 23.Google Scholar
5.Green, M.L. and Levy, R.A., J. Met. (1985) p. 63.Google Scholar
6.Pai, P.L. and Ting, C.H., IEEE Device Lett. 10 (9) (1989).Google Scholar
7.Celerier, A. and Matchet, J., Thin Solid Films 148 (1987) p. 323.CrossRefGoogle Scholar
8.Brayer, J.D., Swanson, R.M., and Sigmon, T.W., J. Electrochem. Soc. 133 (1986) p. 1242.Google Scholar
9.Kolawa, E., Pokela, P.J., Reid, J.S., Chen, J.S., Ruiz, R.P., and Nicolet, M.A., IEEE Electron Device Lett. 12 (1991) p. 321.CrossRefGoogle Scholar
10.De Reus, R., Koper, R.J.I.M., Zeijlemaker, H., and Saris, F.W., Mater. Lett. 9 (1990) p. 500.CrossRefGoogle Scholar
11.Wolf, S. and Taber, R.N., in Silicon Processing for the VLSI Era, Vol. 1: Process Technology (Lattice Press, Sunset Beach, CA, 1986).Google Scholar
12.Shm, H.K., Chi, K.M., Hampden-Smith, M.J., Kodas, T.T., Paffett, M.F., and Farr, J.D., Angew. Chem. Advanced Mater. 3 (1991) p. 246.Google Scholar
13.Shin, H.K., Chi, K.M., Hampden-Smith, M.J., Kodas, T.T., Paffett, M.F., and Farr, J.D., Chem. Mater. 4 (1992) p. 788.CrossRefGoogle Scholar
14.Reynolds, S.K., Smart, C.J., Baran, E.F., Baum, T.H., Larson, C.E., and Brock, P.J., Appl. Phys. Lett. 59 (1991) p. 2332.CrossRefGoogle Scholar
15.Norman, J.A.T., Muratore, B.A., Dyer, P.N., Roberts, D.A., and Hochberg, A.K., J. Phys. (Paris) IV (1) (1991) p. C2271.Google Scholar
16.Jain, A., Chi, K.M., Hampden-Smith, M.J., Kodas, T.T., Paffett, M.F., and Farr, J.D., J. Electrochem. Soc., in press (1993).Google Scholar
17.Gross, M.E. and Donnelly, V.M., in Advanced Metallization for ULSI Applications, edited by Rana, V.V.S., Joshi, R.V., and Ohdomari, I. (Mater. Res. Soc. Symp. Proc, Pittsburgh, PA, 1991) p. 355.Google Scholar
18.Jain, A., Chi, K.M., Hampden-Smith, M.J., Kodas, T.T., Paffett, M.F., and Farr, J.D., Chem. Mater. 3 (1991) p. 995.CrossRefGoogle Scholar
19.Baum, T.J. and Larson, C.E., Chem. Mater. 4 (1992) p. 365.CrossRefGoogle Scholar
20.Kumar, R., Fronczek, F.R., Maverick, A.W., Lai, W.G., and Griffin, G.L., Chem. Mater. 4 (1992) p. 577.CrossRefGoogle Scholar
21.Jain, A., Farkas, J., Chi, K-M, Hampden-Smith, M.J., and Kodas, T.T., Appl. Phys. Lett. 62 (1992) p. 5941.Google Scholar
22.Dubois, L.H. and Zegarski, B.R., J. Electrochem. Soc. 139 (1992) p. 3295.CrossRefGoogle Scholar
23.Jain, A., Jaraith, R., Kodas, T.T., and Hampden-Smith, M.J., J. Appl. Phys., submitted (1993).Google Scholar
24.Broadbent, E.K., IEEE Trans. Electron. Devices (July, 1988) p. 952.CrossRefGoogle Scholar
25.Rye, R.R., Chi, K.M., Hampden-Smith, M.J., and Kodas, T.T., J. Electrochem. Soc. 139 (1992) p. L60CrossRefGoogle Scholar
26.Hampden-Smith, M.J., Kodas, T.T., and Rye, R.R., Adv. Mater. 4 (1992) p. 524.CrossRefGoogle Scholar
27.Rye, R.R., Knapp, J.A., Chi, K.M., Hampden-Smith, M.J., and Kodas, T.T., J. Appl. Phys. 72 (1993) p. 5941.CrossRefGoogle Scholar
28.Sesselmann, W. and Chuang, T.J., Surf. Sci. 176 (1986) p. 32.CrossRefGoogle Scholar
29.Sesselmann, W. and Chuang, T.J., Surf. Sci. 176 (1986) p. 67; W. Sesselmann, E.E. Marinero, and T.J. Chuang, Surf. Sci. 178 (1986) p. 787.CrossRefGoogle Scholar
30.Winters, H.F., J. Vac. Sci. Technol. A3 (1985) p. 786.CrossRefGoogle Scholar
31.Rosenstock, H.M., Sites, J.R., Walton, J.R., and Baldock, R., J. Chem. Phys. 23 (1955) p. 2442.CrossRefGoogle Scholar
32.Wong, C. and Schomaker, V., J. Phys. Chem. 61 (1957) p. 358.CrossRefGoogle Scholar
33.Shelton, R.A.J., Trans. Faraday Soc. 57 (1950) p. 2113.CrossRefGoogle Scholar
34.Brewer, L. and Lofgren, N.L., Am. Chem. Soc. 72 (1950) p. 3038.CrossRefGoogle Scholar
35.Goddard, P.J. and Lambert, R.M., Surf. Sci. 67 (1977) p. 180.CrossRefGoogle Scholar
36.Guide, P. and Scholtz, C., U.S. Patent No. 4,838,994 (June 13, 1989).Google Scholar
37.Schwartz, G.C. and Schaible, P.M., J. Electrochem. Soc. 130 (1983) p. 1777; P.M. Schaible and G.C. Schwartz, U.S. Patent No. 4,352,716 (1982).CrossRefGoogle Scholar
38.Howard, B.J., Wolterman, S.K., Yoo, W.J., Gittleman, B., and Steinbruchel, C.H., in Surface Chemistry and Beam-Solid interactions, edited by Atwater, H., Houle, F.A., and Lowndes, D. (Mater. Res. Soc. Symp. Proc. 201, Pittsburgh, PA, 1991) p. 129.Google Scholar
39.Arita, Y., Proc. SEMICON/KOREA 91 (September, 1991) p. II3.Google Scholar
40.Hall, A. and Nojiri, K., Solid State Tech. (May, 1991) p. 107.Google Scholar
41.Druschke, F., Kraus, G., Kuenzel, U., Ruth, W.D., and Schaefer, R., U.S. Patent No. 4,557,796 (December 10, 1985).Google Scholar
42.Bausmith, R.C., Cote, W.J., Cronin, J.C., Holland, K.L., Kaanta, C.W., Lee, P.P., and Wright, T.M., U.S. Patent No. 4,919,750 (April 24, 1990).Google Scholar
43.Grobman, W.D., Ho, E., Hurst, J.E. Jr., Ritsko, J.J., and Tomkiewicz, Y., U.S. Patent No. 4,622,095 (November 11, 1986).Google Scholar
44.Chen, L., Chuang, T.J., and Mathad, G.S., US. Patent No. 4,490,210 (December 25, 1984); L. Chen, J.R. Lankard, and G.S. Mathad, U.S. Patent No. 4,490,211 (December 25, 1984).Google Scholar
45.Winters, H.F., J. Vac. Sci. Technoi. B 3 (1) (1985) p. 9.CrossRefGoogle Scholar
46.Sesselmann, W., Marinero, E.E., and Chuang, T.J., Appl. Phys. A 41 (1986) p. 209.CrossRefGoogle Scholar
47.Tang, H. and Herman, I.P., in In-Situ Patterning: Selective Area Deposition and Etching, edited by Bernhardt, A.R., Black, J.G., and Rosenberg, R. (Mater. Res. Soc. Symp. Proc. 158, Pittsburgh, PA, 1990) p. 331; H. Tang and I.P. Herman, J. Vac. Sci. Technol. A 8 (3) (1990) p. 1608.Google Scholar
48.van Veen, G.N.A., Bailer, T., and de-Vries, A.D., J. Appl. Phys. 60 (10) (1986) p. 3746.CrossRefGoogle Scholar
49.Brannon, J.H. and Brannon, K.W., J. Vac. Sci. Technol. B 7 (5) (1989) p. 1275.CrossRefGoogle Scholar
50.Farkas, J., Chi, K.M., Kodas, T.T., and Hampden-Smith, M.J., Advanced Metallization for ULSI (AT&T Bell Laboratories, Murray Hill, NJ 445, 1992).Google Scholar
51.Shin, H.K., Farkas, J., Hampden-Smith, M.J., Kodas, T.T., and Duesler, E.N., J. Chem. Soc, Dalton Trans. 21 (1992) p. 3111.Google Scholar
52.Farkas, J., Chi, K-M., Hampden-Smith, M.J., Kodas, T.T., Dubois, L., J. Appl. Phys., 73 (1993) p. 1455.CrossRefGoogle Scholar
53.Farkas, J., Rousseau, F., Chi, K.M., Kodas, T.T., and Hampden-Smith, M.J., in Materials Modification by Energetic Atoms and Ions, edited by Grabowski, K.S., Barnett, S.A., Rossnagel, S.M., and Wasa, K. (Mater. Res. Symp. Proc. 268, Pittsburgh, PA, 1992).Google Scholar
54.Rousseau, F., Jain, A., Kodas, T.T., Hampden-Smith, M.J., Farr, J.D., and Muenchausen, R., J. Mater. Chem. 2 (1992) p. 893.CrossRefGoogle Scholar