Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-02T23:22:57.314Z Has data issue: false hasContentIssue false

Controlled Growth of High-Temperature Superconducting Thin Films on Polycrystalline Substrates

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

Since their discovery in 1987, significant progress has been made in the fabrication of high-quality, high-temperature superconducting (HTS) thin films. Films with reproducible properties can be routinely deposited on single crystal substrates by several well-established processing techniques. Single crystal substrates, however, are not suitable for many applications because of their cost, limitations in size and shape, and lack of flexibility. Hence, a great deal of effort has been directed at the fabrication of thin films on polycrystalline rather than single crystal substrates. For example, metallic substrates are expected to be useful for the fabrication of HTS conductors for such applications as generators, motors, and superconducting magnetic energy storage (SMES) devices. For polycrystalline thin-film applications, lattice matching for epitaxial growth of thin films is no longer possible. Microstructures of these films are generally more complex than those of single crystal films, primarily because of grain boundaries. As a result, the microstructure of polycrystalline films must be carefully controlled to ensure that the critical current density is high enough for practical applications.

Happily, progress in this respect has been substantial. There have been laboratory demonstrations of techniques for controlled processing of high-quality HTS thin films on polycrystalline substrates. Even though the technology development in this area is still in its infancy, many successful processing approaches have been developed to set the stage for the eventual use of HTS thin films in power device applications.

Type
High-Temperature Superconductors 1992
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Laibowitz, R.B., MRS Bulletin XIV (1) (1989) p. 58.CrossRefGoogle Scholar
2.Beasley, M.R., Proc. IEEE 77 (8) (1989) p. 1155.CrossRefGoogle Scholar
3.Simon, R., Phys. Today 44 (6) (1991) p. 64.CrossRefGoogle Scholar
4.Hammond, R.H. and Bormann, R., Physica C 162–164 (1989) p. 703.CrossRefGoogle Scholar
5.Kwok, H.S., Shaw, D.T., Ying, Q.Y., Zheng, J.P., and Kim, H.S., “Physics of In-Situ Oxide Superconducting Film Deposition - A Review,” in Superconductivity and Applications, edited by Kwok, H.S., Kao, Y.H., and Shaw, D.T. (Plenum Press, New York, 1990) p. 47.CrossRefGoogle Scholar
6.Narumi, E., Song, L.W., Yang, F., Patel, S., Kao, Y.H., and Shaw, D.T., Appl. Phys. Lett. 58 (1991) p. 1202; 56 (1990) p. 2684.CrossRefGoogle Scholar
7.Narumi, E., Song, L.W., Hwa, S., Ye, J., Yang, F., Kao, Y.H., Patel, S., Shaw, D.T., and Tkaczyk, J.E., IEEE Trans. Magn. 27 (1991) p. 1648.CrossRefGoogle Scholar
8.Saitoh, J., Fukutomi, M., Komori, K., Tanaka, Y., Asano, T., Maeda, H., and Takahara, H., Jpn. J. Appl. Phys. 30 (1991) p. L898.CrossRefGoogle Scholar
9.Kumar, A., Ganapathi, L., Kanetkar, S.M., and Narayan, J., Appl. Phys. Lett. 69 (1991) p. 2410.Google Scholar
10.Saitoh, J., Fukutomi, M., Tanaka, Y., Asano, T., Maeda, H., and Takahara, H., Jpn. J. Appl. Phys. 29 (1990) p. L1117.CrossRefGoogle Scholar
11.Takano, S., Yoshida, N., Okuda, S., and Nagata, M., Proc. ISTEC Workshop on Superconductors, Kagoshima, Japan (1990), p. 17.Google Scholar
12.Yang, F., Narumi, E., Patel, S., and Shaw, D.T., Appl. Phys. Lett. 60 (1992) p. 249.CrossRefGoogle Scholar
13.Norton, D.P., Lowndes, D.H., Budai, J.D., Christen, D.K., Jones, E. C., Lay, K.W., and Tkaczyk, J.E., J. Appl. Phys. 68 (1990) p. 223.CrossRefGoogle Scholar
14.Narumi, E., Lee, J., Li, C., Hosokawa, S., Patel, S., and Shaw, D.T., Appl. Phys. Lett. 59 (1991) p. 3180.CrossRefGoogle Scholar
15.Mao, X.L., Berdahl, P., Russo, R.E., Liu, H.B., and Ho, J.C., Physica C 183 (1991) p. 167.CrossRefGoogle Scholar
16.Iijima, Y., Tanabe, N., and Kohno, O., Proc. ISS'91 (1991); Ionics 2 (1992) p. 17.Google Scholar
17.Iijima, Y., Tanabe, N., Kohno, O., and Ikeno, Y., Physica C 60 (1991), p. 769; p. 1959.Google Scholar
18.Yamaguchi, T., Aoki, S., Sadakata, N., Kohno, O., and Osanai, H., Appl. Phys. Lett. 55 (1989) p. 1581.CrossRefGoogle Scholar
19.Yamaguchi, T., Aoki, S., Sadakata, N., Kohno, O., Saji, A., and Kuroda, N., Jpn. J. Appl. Phys. 30 (1991) p. 1398.CrossRefGoogle Scholar
20.Aoki, S., Yamaguchi, T., Iijima, Y., Kagawa, A., Kohno, O., Nagaya, S., and Inoue, T., Jpn. J. Appl. Phys. (to be published).Google Scholar
21.Ozaki, M., Harada, N., Akashita, S., and Chang, J., Proc. Sci. and Tech. of Thin Film Superconductors (Plenum Press, New York, 1988) p. 363.Google Scholar
22.Satoh, K., Yoshihara, M., Nakajima, M., Hara, T., Ishii, H., and Yamamoto, T., Jpn. J. Appl. Phys. 30 (1991) p. L1363.CrossRefGoogle Scholar
23.Nicolet, M.A., Thin Solid Films 52 (1978) p. 415.CrossRefGoogle Scholar
24.Ying, Q.Y. and Kwok, H.S., Appl. Phys. Lett. 56 (15) (1990) p. 1478.CrossRefGoogle Scholar
25.Tietz, L.A. and Carter, B., J. Mater. Res. 4 (5) (1989) p. 1072.CrossRefGoogle Scholar
26.Cheung, C.T. and Ruckenstein, R., J. Mater. Res. 4 (1989) p. 1.CrossRefGoogle Scholar
27.Chisholm, M.F. and Pennycook, S.J., Nature 351 (1991) p. 47.CrossRefGoogle Scholar
28.Ekin, L.W., Larson, T.M., Herman, A.M., Sheng, Z.Z., Togano, K., and Kumakura, H., Physica C 160 (1989) p. 489.CrossRefGoogle Scholar
29.Tkaczyk, J.E., Briant, C.L., DeLuca, J.A., Hall, E.L., Karas, P.L., Lay, K.W., Narumi, E., and Shaw, D.T., J. Mater. Res. 7 (1992) p. 6.CrossRefGoogle Scholar
30.Peterson, R.L. and Ekin, J.W., Physica C 157 (1989) p. 325.CrossRefGoogle Scholar
31.Movchan, B.A. and Denchishin, A.V., Phys. of Metals and Metallography (USSR) 28 (1969) p. 83.Google Scholar
32.Dimos, D., Chaudhar, P., Mannhart, J., LeGoues, F.K., Phys. Rev. Lett. 61 (1988) p. 219.CrossRefGoogle Scholar
33.Mannhart, J. and Tsuei, C.C., Z. Phys. B-Condensed Matter 77 (1989) p. 53.CrossRefGoogle Scholar
34.Rhyner, J. and Blatter, G., Phys. Rev. B 40 (1989) p. 829.CrossRefGoogle Scholar
35.Gross, R., Gupta, A., Olsson, E., Segmüller, A., and Koren, G., Appl. Phys. Lett. 57 (1990) p. 203.CrossRefGoogle Scholar
36.Freltoft, T., Jensen, H.J., and Minnhagen, P., Solid State Commun. 78 (1991) p. 635.CrossRefGoogle Scholar
37.Gao, J., Aarnink, W.A.M., Gerritsma, G.J., Rijnders, A.J.H.M., Rogalla, H., Hakkens, F., Coene, W., and Gijs, M.A.M., Physica C 177 (1991) p. 384.CrossRefGoogle Scholar
38.Narumi, E. and Shaw, D.T., Kunpublished.Google Scholar
39.Iijima, Y., Tanabe, N., Kohno, O., and Ikeno, Y., Appl. Phys. Lett. 60 (1992) p. 769.CrossRefGoogle Scholar
40.Kwok, H.S. and Kim, D.H., Physica C 185–189 (1991) p. 2289.Google Scholar
41.Geis, M.W., Flanders, D.C., and Smith, H.I., J. Appl. Phys. 35 (1) (1979) p. 71.Google Scholar
42.Kanata, T., Takakura, H., and Hamakawa, Y., J. Appl. Phys. 65 (12) (1989) p. 4730.CrossRefGoogle Scholar
43.Harshavardhan, K.S. and Venkatesan, T., private communication.Google Scholar
44.Yoshida, N.et al., Physica C (1991) p. 185189 and 1943.Google Scholar
45.Hauper, J.M.E., Cuomo, J.J., Gambino, R.J., and Kaufman, H.R., “Modification of Thin Films by Ion Bombardment During Deposition,” Chapter 4, in Ion Bombardment Modification of Surfaces, edited by Auciello, O. and Kelly, R. (Elsevier, 1984).Google Scholar
46.Doyle, J.P., Roy, R.A., Yee, D.S., and Cuomo, J.J., “Oriented Growth of YBCO Thin Films by Dual Ion Beam Sputtering,” presented at the American Vacuum Society National Topical Conference on HTS, Atlanta, Georgia (1988).CrossRefGoogle Scholar
47.Ekin, J.W., Hart, H.R., and Gaddipati, A.R., J. Appl. Phys. 68 (1990) p. 2285.CrossRefGoogle Scholar
48.Ekin, J.W., Salama, K., and Selvamanickam, V., Appl. Phys. Lett. 59 (1991) p. 360.CrossRefGoogle Scholar
49.Christen, D., Dynes, R.C., Emergy, V.J., Falco, C.M., Gubser, D.U., Jin, S., Kroger, H., and Shaw, D.T., Cryogenics 32 (4) (1992) p. 338.CrossRefGoogle Scholar
50.Sato, K., Hikata, T., Mukai, H., Ueyama, M., Shibuta, N., Kato, T., Masuda, T., Iwata, K., and Mitsui, T., IEEE Trans. Magn. 27 (1991) p. 1231.CrossRefGoogle Scholar
51.Haldar, P., Hoehn, J.G., Rice, J.A., and Motowidlo, L.R., Appl. Phys. Lett. 60 (1992) p. 495.CrossRefGoogle Scholar
52.DeLuca, J.A., Karas, P.L., Tkaczyk, J.E., Briant, C.L., Garbauskers, M.F., and Bednarczyk, P.J., presented at the 1992 MRS Spring Meeting, San Franscisco, California, 1992 (to be published).Google Scholar