Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-26T11:15:09.106Z Has data issue: false hasContentIssue false

Concepts for simulating and understanding materials at the atomic scale

Published online by Cambridge University Press:  09 May 2012

M.W. Finnis*
Affiliation:
Department of Materials and Department of Physics, Imperial College London, UK; [email protected]
Get access

Abstract

This article discusses some of the many-body potentials used for simulations of processes and energies in materials at the atomic scale, emphasizing their motivation and underlying physical concepts, particularly where these are not entirely empirical. The perspective is somewhat historical and describes the importance of developments of the theory of electrons in solids for the derivation of many-body (or many-atom) potential models. The models include density-dependent pairwise potentials, effective medium and embedded-atom models, and polarizable ion models. As a recent radical departure from approaches derived from the physics of electrons, the development of models based on information theory is also described.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Gibson, J.B., Goland, A.N., Milgram, M., Vineyard, G.H., Phys. Rev. 120, 1229 (1960).CrossRefGoogle Scholar
2.Materials Research Society, Symposium U: Nuclear Radiation Detection Materials (2011): http://www.mrs.org/s11program-u/.Google Scholar
3.Materials Research Society, Symposium RR: Fundamental Science of Defects and Microstructure in Advanced Materials for Energy (2011): http://www.mrs.org/s11program-rr/.Google Scholar
4.Materials Research Society, Symposium XX: Computational Studies of Phase Stability and Microstructure Evolution (2011): http://www.mrs.org/s11program-xx/.Google Scholar
5.Coulson, C.A., Proc. R. Soc. London, Ser. A 169, 413 (1939).Google Scholar
6.Harrison, W.A., Pseudopotentials in the Theory of Metals (Benjamin, New York, 1966).Google Scholar
7.Hohenberg, P., Kohn, W., Phys. Rev. 136, B864 (1964).CrossRefGoogle Scholar
8.Kohn, W., Sham, L.J., Phys. Rev. 140, A1133 (1965).CrossRefGoogle Scholar
9.Anisimov, V.I., Zaanen, J., Andersen, O.K., Physical Review B, 44, 943 (1991).CrossRefGoogle Scholar
10.Keating, P.N., Phys. Rev. 145 (2), 637 (1966).CrossRefGoogle Scholar
11.Finnis, M.W., Interatomic Forces in Condensed Matter (Oxford University Press, UK, 2003).CrossRefGoogle Scholar
12.Behler, J., Parrinello, M., Phys. Rev. Lett. 98 (14), 4 (2007).CrossRefGoogle Scholar
13.Bartók, A.P., Payne, M.C., Kondor, R., Csanyi, G., Phys. Rev. Lett. 104, 136403 (2010).CrossRefGoogle Scholar
14.Csanyi, G., Moras, G., Kermode, J.R., Payne, M.C., Mainwood, A., De Vita, A., Theory of Defects in Semiconductors 104, 193 (2007).CrossRefGoogle Scholar
15.Phillips, J.C., Kleinman, L., Physical Review 116 (2), 287 (1959).CrossRefGoogle Scholar
16.Cohen, M.L., Heine, V., Weaire, D., Solid State Physics (Academic, New York, 1970), vol. 24.Google Scholar
17.Harrison, W.A., Electronic Structure and the Properties of Solids (W.H. Freeman, San Francisco, 1980).Google Scholar
18.Harrison, W.A., Phys. Rev. 136, A1107 (1964).CrossRefGoogle Scholar
19.Ehrenfest, P., Z. Phys. 45, 455 (1927).CrossRefGoogle Scholar
20.Feynman, R.P., Phys. Rev. 56, 340 (1939).CrossRefGoogle Scholar
21.Hellmann, H., Einführung in die Quantenchemie (Deuticke, Leipzig and Vienna, 1937).Google Scholar
22.Stott, M.J., Zaremba, E., Phys. Rev. B 22, 1564 (1980).CrossRefGoogle Scholar
23.Norskov, J.K., Lang, N.D., Phys. Rev. B 21, 2131 (1980).CrossRefGoogle Scholar
24.Norskov, J.K., Phys. Rev. B 26, 2875 (1982).CrossRefGoogle Scholar
25.Jacobsen, K.W., Norskov, J.K., Puska, M.J., Phys. Rev. B 35, 7423 (1987).CrossRefGoogle Scholar
26.Daw, M.S., Baskes, M.I., Phys. Rev. Lett. 50 (17), 1285 (1983).CrossRefGoogle Scholar
27.Daw, M.S., Baskes, M.I., Phys. Rev. B 29, 6443 (1984).CrossRefGoogle Scholar
28.Friedel, J., Trans. Met. Soc. AIME 616 (1964).Google Scholar
29.Friedel, J., in The Physics of Metals, Vol. I—Electrons, Ziman, J.M., Ed. (Cambridge University Press, UK, 1969), pp. 340408.Google Scholar
30.Pettifor, D.G., Bonding and Structure in Molecules and Solids (Clarendon Press, Oxford, 1995).CrossRefGoogle Scholar
31.Cyrot-Lackmann, F., J. Phys. Chem. Solids 29, 1235 (1968).CrossRefGoogle Scholar
32.Ducastelle, F., J. Phys. 31, 1055 (1970).Google Scholar
33.Haydock, R., Heine, V., Kelly, M.J., J. Phys. C: Solid State Phys. 5, 2845 (1972).CrossRefGoogle Scholar
34.Pettifor, D.G., Weaire, D.L., The Recursion Method and its Applications (Springer Verlag, Berlin, 1985).Google Scholar
35.Inoue, J., Ohta, Y., J. Phys. C: Solid State Phys. 20 (13), 1947 (1987).CrossRefGoogle Scholar
36.Glanville, S., Paxton, A.T., Finnis, M.W., J. Phys. F: Met. Phys. 18, 693 (1988).CrossRefGoogle Scholar
37.Nex, C.M.M., Comput. Phys. Commun. 53 (1–3), 141 (1989).CrossRefGoogle Scholar
38.Inoue, J., Okada, A., Ohta, Y., J. Phys. Condens. Matter 5 (39), L465 (1993).Google Scholar
39.Obata, S., Masuda Jindo, K., Comput. Mater. Sci. 6 (3), 197 (1996).CrossRefGoogle Scholar
40.Finnis, M.W., Sinclair, J.E., Philos. Mag. A 50, 45 (1984).CrossRefGoogle Scholar
41.Ercolessi, F., Tosatti, E., Parrinello, M., Phys. Rev. Lett. 57, 719 (1986).CrossRefGoogle Scholar
42.Allan, G., Lannoo, M., J. Phys. Chem. Solids 37, 699 (1976).Google Scholar
43.Nguyen-Manh, D., Vitek, V., Horsfield, A.P., Prog. Mater Sci. 52 (2–3), 255 (2007).Google Scholar
44.Drautz, R., Pettifor, D.G., Phys. Rev. B 74 (17), 174117 (2006).CrossRefGoogle Scholar
45.Dick, B.G., Overhauser, A.W., Phys. Rev. 112, 90 (1958).CrossRefGoogle Scholar
46.Zha, C.S., Mao, H.K., Hemley, R.J., Proc. Natl. Acad. Sci. U.S.A. 97 (25), 13494 (2000).CrossRefGoogle Scholar
47.Marks, N.A., Fabris, S., Finnis, M.W., Solid-State Chemistry of Inorganic Materials II 547, 197 (1999).Google Scholar
48.Marks, N.A., Finnis, M.W., Harding, J.H., Pyper, N.C., J. Chem. Phys. 114, 4406 (2001).CrossRefGoogle Scholar
49.Wilson, M., Huang, Y.M., Exner, M., Finnis, M.W., Phys. Rev. B 54, 15683 (1996).CrossRefGoogle Scholar
50.Tangney, P., Scandolo, S., J. Chem. Phys. 117 (19), 8898 (2002).CrossRefGoogle Scholar
51.Jahn, S., Madden, P.A., Wilson, M., Phys. Rev. B 74 (2), 024112 (2006).CrossRefGoogle Scholar
52.Streitz, F.H., Mintmire, J.W., J. Adhes. Sci. Technol. 8, 853 (1994).CrossRefGoogle Scholar
53.Frederiksen, S.L., Jacobsen, K.W., Brown, K.S., Sethna, J.P., Phys. Rev. Lett. 93, 165501 (2004).Google Scholar
54.MacKay, D.J.C., Information Theory, Inference, and Learning Algorithms (Cambridge University Press, UK, 2003).Google Scholar