Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-12T13:52:03.715Z Has data issue: false hasContentIssue false

Computational modeling of actinide materials and complexes

Published online by Cambridge University Press:  31 January 2011

Per Söderlind
Affiliation:
Condensed Matter and Materials Division, Lawrence Livermore National Laboratory; [email protected]
G. Kotliar
Affiliation:
Department of Physics and Astronomy, Rutgers University, Piscataway, NJ 08854, USA; kotliar_AT_physics.rutgers.edu
K. Haule
Affiliation:
Department of Physics and Astronomy, Rutgers University, Piscataway, NJ 08854, USA; [email protected]
P. M. Oppeneer
Affiliation:
Uppsala University, SE-75120 Uppsala, Sweden; [email protected]
D. Guillaumont
Affiliation:
French Atomic Energy Commission, Marcoule, France; [email protected]
Get access

Abstract

In spite of being rare, actinide elements provide the building blocks for many fascinating condensed-matter systems, both from an experimental and theoretical perspective. Experimental observations of actinide materials are difficult because of rarity, toxicity, radioactivity, and even safety and security. Theory, on the other hand, has its own challenges. Complex crystal and electronic structures are often encountered in actinide materials, as well as pronounced electron correlation effects. Consequently, theoretical modeling of actinide materials and their 5f electronic states is very difficult. Here, we review recent theoretical efforts to describe and sometimes predict the behavior of actinide materials and complexes, such as phase stability including density functional theory (DFT), DFT in conjunction with an additional Coulomb repulsion U (DFT+U), and DFT in combination with dynamical mean-field theory (DFT+DMFT).

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Hohenberg, P., Kohn, W., Phys. Rev. 136, B864 (1964).CrossRefGoogle Scholar
2.Kohn, W., Sham, L., Phys. Rev. 140, A1133 (1965).Google Scholar
3.Perdew, J.P., Ruzsinsky, A., Csonka, G.I., Vydorv, O.A., Scuseria, G.E., Constantin, L.A., Zhou, X., Burke, K., Phys. Rev. Lett. 100, 136406 (2008).Google Scholar
4.Söderlind, P., Eriksson, O., Johansson, B., Wills, J.M., Phys. Rev. B 50, 7291 (1994).Google Scholar
5.Söderlind, P., Nash, C.S., in Advances in Plutonium Chemistry 1967–2000, Hoffman, D., Ed. (American Nuclear Society, La Grange Park, 2002), p. 14.Google Scholar
6.Zachariasen, W.H., J. Inorg. Nucl. Chem. 35, 3487 (1973).Google Scholar
7.Söderlind, P., Adv. Phys. 47, 959 (1998).CrossRefGoogle Scholar
8.Penicaud, M., J. Phys. Condens. Matter 12, 5819 (2000).Google Scholar
9.Söderlind, P., Eriksson, O., Johnasson, B., Wills, J.M., Johansson, B., Nature 374, 524 (1995).Google Scholar
10.Haire, R.G., Heathman, S., Iridi, M., Le Bihan, T., Lindbaum, A., Rebizant, J., Phys. Rev. B 67, 134101 (2003).Google Scholar
11.Söderlind, P., Eriksson, O., Phys. Rev. B 60, 9372 (1999).CrossRefGoogle Scholar
12.Akella, J., Weir, S., Wills, J.M., Söderlind, P., J. Phys. Condens. Matter 9, L549 (1997).CrossRefGoogle Scholar
13.Fast, L., Eriksson, O., Johansson, B., Wills, J.M., Straub, G., Roeder, H., Nordström, L., Phys. Rev. Lett. 81, 2978 (1998).Google Scholar
14.Söderlind, P., Europhys. Lett. 55, 525 (2001).Google Scholar
15.Söderlind, P., Sadigh, B., Phys. Rev. Lett. 92, 185702 (2004).Google Scholar
16.Lashley, J.C., Lawson, A., McQueeney, R.J., Lander, G.H., Phys. Rev. B 72, 054416 (2005).Google Scholar
17.Heathman, S., Haire, R.G., Le Bihan, T., Lindbaum, A., Litfin, K., Meresse, Y., Libotte, H., Phys. Rev. Lett. 85, 2961 (2000).CrossRefGoogle Scholar
18.Lindbaum, A., Heathman, S., Litfin, K., Meresse, Y., Haire, R.G., Le Bihan, T., Libotte, H., Phys. Rev. B 63, 214101 (2001).CrossRefGoogle Scholar
19.Heathman, S., Haire, R.G., Le Bihan, T., Lindbaum, A., Iridi, M., Normile, P., Li, S., Ahuja, R., Johansson, B., Lander, G.H., Science 309, 110 (2005).CrossRefGoogle Scholar
20.Moore, K.T., van der Laan, G., Haire, R.G., Wall, M.A., Schwartz, A.J., Söder-lind, P., Phys. Rev. Lett. 98, 236402 (2007).Google Scholar
21.Söderlind, P., Landa, A., Phys. Rev. B 72, 024109 (2005).Google Scholar
22.Söderlind, P., Eriksson, O., Wills, J.M., Boring, A.M., Phys. Rev. B 48, 9306 (1993).CrossRefGoogle Scholar
23.Bouchet, J., Jollet, F., Zerah, G., Phys. Rev. B 74, 134304 (2006).CrossRefGoogle Scholar
24.Söderlind, P., Phys. Rev. B 66, 085113 (2002).Google Scholar
25.Bouchet, J., Phys. Rev. B 77, 024113 (2008).Google Scholar
26.Taylor, C.D., Phys. Rev. B 77, 094119 (2008).CrossRefGoogle Scholar
27.Söderlind, P., Klepeis, J.E., Phys. Rev. B 79, 104110 (2009).CrossRefGoogle Scholar
28.Söderlind, P., Landa, A., Klepeis, J.E., Suzuki, Y., Migliori, A., Phys. Rev. B 81, 224110 (2010).Google Scholar
29.Hay, P.J., Martin, R.L., J. Chem. Phys. 109, 3875 (1998).CrossRefGoogle Scholar
30.van Lenthe, E., Baerends, E.J., Snijders, J.G., J. Chem. Phys. 99, 4597 (1993).Google Scholar
31.Schelter, E.J., Yang, P., Scott, B.L., Da Re, R.E., Jantunen, K.C., Martin, R.L., Hay, P.J., Morris, D.E., Kiplinger, J.L., J. Am. Chem. Soc. 129, 5139 (2007).Google Scholar
32.Charushnikova, I., Bosse, E., Guillaumont, D., Moisy, P., Inorg. Chem. 49, 2077 (2010).Google Scholar
33.Ingram, K.I.M., Tassell, M.J., Gaunt, A.J., Kaltsoyannis, N., Inorg. Chem. 47 7824 (2008).CrossRefGoogle Scholar
34.Guillaumont, D., J. Phys. Chem. A 108, 6893 (2004).Google Scholar
35.Herbst, J.F., Watson, R.E., Lindgren, I., Phys. Rev. B 14, 3265 (1976).Google Scholar
36.Dudarev, S.L., Nguyen Manh, D., Sutton, A.P., Philos. Mag. B 75, 613 (1997)Google Scholar
37.van der Marel, D., Sawazky, J., Phys. Rev. B 37, 10674 (1988).Google Scholar
38.Oppeneer, P.M., Yaresko, A.N., Perlov, A.Y., Antonov, V.N., Eschrig, H., Phys. Rev. B 54, R3706 (1996).Google Scholar
39.Oppeneer, P.M., Antonov, V.N., Perlov, A.Y., Yaresko, A.N., Kraft, T., Eschrig, H.Physica B 230 (232), 544 (1997).Google Scholar
40.Dudarev, S.L., Botton, G.A., Savrasov, S.Y., Humphreys, C.J., Sutton, A.P., Phys. Rev. B 57, 1505 (1998).CrossRefGoogle Scholar
41.Shick, A.B., Liechtenstein, A.I., Pickett, W.E., Phys. Rev. B 60, 10763 (1999).Google Scholar
42.Savrasov, S.Y., Kotliar, G., Phys. Rev. Lett. 84, 3670 (2000)Google Scholar
43.Shick, A.B., Pickett, W.E., Phys. Rev. Lett. 86, 300 (2001).Google Scholar
44.Laskowski, R., Madsen, G.K.H., Blaha, P., Schwarz, K., Phys. Rev. B 69, 140408(R) (2004).Google Scholar
45.Ghosh, D.B., De, S.K., Oppeneer, P.M., Brooks, M.S.S., Phys. Rev. B 72, 115123 (2005).Google Scholar
46.Shick, A.B., Janis, V., Oppeneer, P.M., Phys. Rev. Lett. 94, 016401 (2005)Google Scholar
47.Prodan, I.D., Scuseria, G.E., Martin, R.L., Phys. Rev. B 76, 033101 (2007)Google Scholar
48.Wang, B.-T., Shi, H., Li, W., Zhang, P., Phys. Rev. B 81, 045119 (2010).Google Scholar
49.Shick, A.B., Drchal, V., Havela, L., Europhys. Lett. 69, 588 (2005).Google Scholar
50.Shick, A.B., Havela, L., Kolorenc, J., Drchal, V., Gouder, T., Oppeneer, P.M., Phys. Rev. B 73, 104415 (2006).Google Scholar
51.Sarrao, J.L., Morales, L.A., Thompson, J.D., Scott, B.L., Stewart, G.R., Wastin, F., Rebizant, J., Boulet, P., Colineau, E., Lander, G.H., Nature 420, 297 (2002).CrossRefGoogle Scholar
52.Oppeneer, P.M., Shick, A.B., Rusz, J., Lebegue, S., Eriksson, O., J. Alloys Compd. 444–445, 109 (2007).Google Scholar
53.Hiess, A., Stunault, A., Colineau, E., Rebizant, J., Wastin, F., Caciuffo, R., Lander, G.H., Phys. Rev. Lett. 100, 076403 (2008).Google Scholar
54.Opahle, I., Oppeneer, P.M., Phys. Rev Lett. 90, 157001 (2003).Google Scholar
55.Bauer, E.D., Thompson, J.D., Sarrao, J.L., Morales, L.A., Wastin, F., Rebizant, J., Griveau, J.C., Javorsky, P., Boulet, P., Colineau, E., Lander, G.H., Stewart, G.R., Phys. Rev. Lett. 93, 147005 (2004).Google Scholar
56.Savrasov, S., Kotliar, G., Abrahams, E., Nature 410, 793 (2001).Google Scholar
57.Dai, X., Savrasov, S.Y., Kotliar, G., Migliori, A., Ledbetter, H., Abrahams, E.Science 300, 953 (2003).Google Scholar
58.Shim, J.H., Haule, K., Kotliar, G., Nature 446, 513 (2007).Google Scholar
59.Shim, J.H., Haule, K., Savrasov, S., Kotliar, G., Phys. Rev Lett. 101, 126403 (2008).Google Scholar
60.Yee, C.-H., Kotliar, G., Haule, K., Phys. Rev B 81, 035105 (2010)Google Scholar
61.Haule, K., Kotliar, G., Nat. Phys. 5, 796 (2009).Google Scholar
62.Shim, J.H., Haule, K., Kotliar, G., Europhys. Lett. 85, 17007 (2009).Google Scholar
63.Marianetti, C.A., Haule, K., Kotliar, G., Fluss, M.J., Phys. Rev Lett. 101, 056403 (2008).Google Scholar
64.Savrasov, S.Y., Haule, K., Kotliar, G., Phys. Rev Lett. 96, 036404 (2006)Google Scholar
65.Han, M.J., Wan, X., Savrasov, S.Y., Phys. Rev. B 78, 060401 (2008).Google Scholar
66.Pourovskii, L.V., Katsnelson, M.I., Lichtenstein, A.I., Havela, L., Gouder, T., Wastin, F., Shick, A.B., Drchal, V., Lander, G.H., Europhys. Lett. 74, 479 (2006).CrossRefGoogle Scholar
67.Pourovskii, L.V., Katsnelson, M.I., Lichtenstein, A.I., Phys. Rev. B 72, 115106 (2005).Google Scholar
68.Suzuki, M.-T., Oppeneer, P.M., Phys. Rev. B 80, 161103 (2009).Google Scholar
69.Pourovskii, L.V., Katsnelson, M.I., Lichtenstein, A.I., Phys. Rev. B 73, 060506 (2006).Google Scholar
70.Zhu, J.-X., McMahan, A.K., Jones, M.D., Durakiewicz, T., Joyce, J.J., Wills, J.M.Phys. Rev. B 76, 245118 (2007).Google Scholar
71.Wong, J., Krisch, M., Farber, D.L., Occelli, F., Schwartz, A.J., Chiang, T.-C., Wall, M., Boro, C., Xu, R.Q., Science 301, 1078 (2003).CrossRefGoogle Scholar
72.Moore, K.T., van der Laan, G., Wall, M.A., Schwartz, A.J., Haire, R.G., Phys. Rev B 76, 073105 (2007).Google Scholar
73.Moore, K.T., van der Laan, G., Rev. Mod. Phys. 81, 235 (2009)Google Scholar
74.Kotliar, G., Vollhardt, D., Phys. Today 57, 53 (2004).Google Scholar
75.Kotliar, G., Savrasov, S.Y., Haule, K., Oudovenko, V.S., Parcollet, O., Marianetti, C.A., Rev. Mod. Phys. 78, 865 (2006).Google Scholar
76.Arko, A.J., Joyce, J.J., Morales, L., Wills, J., Lashley, J., Wastin, F., Rebizant, J., Phys. Rev. B 62, 17731779 (2000).Google Scholar