Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-27T20:14:49.975Z Has data issue: false hasContentIssue false

Compaction Issues in Powder Metallurgy

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

Powder metallurgy (P/M) involves a multiple-step process to prepare and consolidate granulated metal and composites into near-net-shaped components. The modern P/M method starts with a precisely defined final geometry and a set of properties for a desired component. Decisions are then made about a variety of processing variables, recognizing that many variables strongly interact counter to the desired properties. Finally preproduction fabrication trials are conducted to optimize key variables until he specifications are achieved, and the processing conditions are established. A critical step in the overall process is the compaction of powder into a sufficiently strong, low-porosity, properly shaped part with uniform microstructure that can be sintered, or alternately heated and pressed to the final dimensions and properties.

Type
Compaction Science and Technology
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Hausner, H.H. and Mai, M.K., Handbook of Powder Metallurgy, 2nd ed. (Chemical Publishing Company, New York, 1982).Google Scholar
2.German, R.M., Powder Metallurgy Science, 2nd ed. (Metal Powder Industries Federation, Princeton, NJ, 1994).Google Scholar
3.Lenel, F.V., Powder Metallurgy Principles and Applications (Metal Powder Industries Federation, Princeton, NJ, 1980).Google Scholar
4.Engstrom, U. and Johansson, B., Powder Metall. 38 (3) (1995) p. 172.Google Scholar
5.Lennon, C.R.A., Bhalla, A.K., and Williams, J.D., Powder Metall. 21 (1) (1978) p. 29.CrossRefGoogle Scholar
6.Sano, Y. and Miyagi, K., Int. J. Powder Metall. 20 (2) (1984) p. 115.Google Scholar
7.Tabata, T., Masaki, S., and Shima, S., Int. J. Powder Metall. Powder Tech. 20 (1) (1984) p. 9.Google Scholar
8.Siwkiewicz, Z. and Stolarz, S., Powder Metall. Int. 18 (6) (1986) p. 407.Google Scholar
9.Mallender, R.F., Dangerfield, C.J., and Coleman, D.S., Powder Metall. 17 (34) (1974) p. 288.CrossRefGoogle Scholar
10.Tabata, T., Masaki, S., and Kamata, K., Powder Metall. Int. 13 (4) (1981) p. 179.Google Scholar
11.Ernst, E.,Thümmler, F., Beiss, P., Wahling, R., and Arnhold, V., Powder Metall. Int. 23 (2) (1991) p. 77.Google Scholar
12.Ward, M. and Billington, J.C., Powder Metall. 22(4) (1979) p. 201.CrossRefGoogle Scholar
13.Schwartz, E.G. and Goodwin, R., Int. J. Powder Metall. Powder Technol. 10 (3) (1974) p. 187.Google Scholar
14.James, B.A., Powder Metall. 30 (4) (1987) p. 273.CrossRefGoogle Scholar
15.Klar, E., ed., Powder Metallurgy, vol. 7, Metals Handbook, 9th ed. (American Society for Metals International, Materials Park, OH, 1984).Google Scholar
16.Lowell, S. and Shields, J.E., Powder Surface Area and Porosity, 2nd ed. (Chapman and Hall, London, 1984).CrossRefGoogle Scholar
17.Beddow, J.K. and Meloy, T., eds., Testing and Characterization of Powder and Fine Particles (Heyden & Sons Ltd., London, 1980).Google Scholar
18.Allen, T., Particle Size Measurement, 3rd ed. (Chapman & Hall, London, 1981).CrossRefGoogle Scholar
19.Annual Book of ASTM Standards, vol. 2.05 (American Society for Testing and Materials, West Conshohocken, PA, 1997).Google Scholar
20.German, R.M., Particle Packing Characteristics (Metal Powder Industries Federation, Princeton, NJ, 1989).Google Scholar
21.James, P.J., Powder Metall. Int. 5 (1973) p. 176.Google Scholar
22.Walker, E.E., Trans. Faraday Society 19 (1923) p. 73.CrossRefGoogle Scholar
23.Athy, L.F., Bull. Am. Assoc. Petrol. Geologist 14 (1930) p. 1.Google Scholar
24.Kawakita, K. and Ludde, K-H., Powder Technol. 4 (1970) p. 61.CrossRefGoogle Scholar
25.Cytermann, R. and Geva, R., Powder Metall. 30 (4) (1987) p. 256.CrossRefGoogle Scholar
26.Mann, A.P., Pullin, D.I., Macrossan, M.N., and Page, N.W., Am. Inst. Phys. 70 (6) (1991) p. 3281.Google Scholar
27.Lewis, R.W., Jinka, A.G.K., and Gethin, D.T., Powder Metall. Int. 25 (6) (1993) p. 287.Google Scholar
28.Tran, D.V., Lewis, R.W., Gethin, D.T., and Ariffin, A.K., Powder Metall. 36 (4) (1993) p. 257.CrossRefGoogle Scholar
29.Gethin, D.T., Tran, D.V., Lewis, R.W., and Ariffin, A.K., Int. J. Powder Metall 30 (4) (1994) p. 385.Google Scholar
30.Kuhn, H.A. and Dax, F.R., Int. J. Powder Metall 32 (3) (1996) p. 229.Google Scholar
31.Ashby, M.F., HIP 6.0 Users Guide (Engineering Department, Cambridge University, Cambridge, 1990).Google Scholar
32.Jinka, A.G.K. and Lewis, R.W., Comput. Methods Appl. Mech. Eng. 114 (1994) p. 249.CrossRefGoogle Scholar