Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-24T02:49:41.708Z Has data issue: false hasContentIssue false

Combining Serial Sectioning, EBSD Analysis, and Image-Based Finite Element Modeling

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

This article first provides a brief review of the status of the subfield of three-dimensional (3D) materials analyses that combine serial sectioning, electron backscatter diffraction (EBSD), and finite element modeling (FEM) of materials microstructures, with emphasis on initial investigations and how they led to the current state of this research area. The discussions focus on studies of the mechanical properties of polycrystalline materials where 3D reconstructions of the microstructure—including crystallographic orientation information—are used as input into image-based 3D FEM simulations. The authors' recent work on a β-stabilized Ti alloy is utilized for specific examples to illustrate the capabilities of these experimental and modeling techniques, the challenges and the solutions associated with these methods, and the types of results and analyses that can be obtained by the close integration of experiments and simulations.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Mangan, M.A., Shiflet, G.J., in Solid–Solid Phase Transformations Proceedings, Johnson, W.C., Howe, J.M., Laughlin, D.E., Soffa, W.A., eds. (TMS, Warrendale, PA, 1994), p. 547.Google Scholar
2.Mangan, M.A., Lauren, P.D., Shiflet, G.J., J. Microsc. 188, 36 (1997).Google Scholar
3.Wolfsdorf, T.L., Bender, W.H., Voorhees, P.W., Acta Mater. 45, 2279 (1997).CrossRefGoogle Scholar
4.Kral, M.V., Spanos, G., Acta Metall. 47, 711 (1999).Google Scholar
5.Shan, Z., Gokhale, A.M., Acta Mater. 49, 2001 (2001).CrossRefGoogle Scholar
6.Hackenberg, R.E., Nordstrom, D.P., Shiflet, G.J., Scripta Mater. 47, 357 (2002).Google Scholar
7.Spowart, J.E., Mullens, H.M., Puchala, B.T., JOM 55, 35 (2003).CrossRefGoogle Scholar
8.Yokomizo, T., Enomoto, M., Umezawa, O., Spanos, G., Rosenberg, R.O., Mater. Sci. Eng. A 344, 261 (2003).Google Scholar
9.Wu, K.M., Inagawa, Y., Enomoto, M., Mater. Charact. 52, 121 (2004).Google Scholar
10.Mulders, J.J.L., Day, A.P., Mater. Sci. Forum 495–497, 237 (2005).CrossRefGoogle Scholar
11.Spowart, J.E., Scripta Mater. 55, 5 (2006).Google Scholar
12.Rowenhorst, D.J., Gupta, A., Feng, C.R., Spanos, G., Scripta Mater. 55, 11 (2006).CrossRefGoogle Scholar
13.Uchic, M.D., Groeber, M.A., Dimiduk, D.M., Simmonds, J.P., Scripta Mater. 55, 23 (2006).CrossRefGoogle Scholar
14.Schwartz, A.J., Kumar, M., Adams, B.L., Electron Backscatter Diffraction in Materials Science (Kluwer Academic, New York, 2000).CrossRefGoogle Scholar
15.Dingley, D.J., J. Microsc. 213, 214 (2004).Google Scholar
16.Everett, R.K., Geltmacher, A.B., Simmonds, K.E., “3D Image-Based Modeling of Void Interactions in HY100 Steel” in Plasticity, Damage, and Fracture at Macro, Micro, and Nano Scales, Khan, A.S., Lopez-Pamies, O., eds. (NEAT Press, Fulton, MD, 2002), pp. 699701.Google Scholar
17.Lewis, A.C., Geltmacher, A.B., Scripta Mater. 55, 81 (2006).Google Scholar
18.Mangan, M.A., Shiflet, G.J., Scipta Mater. 37, 517 (1997).CrossRefGoogle Scholar
19.Wahab, A.A., Kral, M.V., Mater. Sci. Eng. A 412, 222 (2005).CrossRefGoogle Scholar
20.Wall, M.A., Schwartz, A.J., Nguyen, L., Ultramicroscopy 88, 73 (2001).Google Scholar
21.Jin, H., Wu, P.D., Ball, M.D., Lloyd, D.J., Mater. Sci. Technol. 21, 419 (2005).Google Scholar
22.Schaeben, H., Apel, M., Frank, T., Iwanowski, M., Zaefferer, S., Mater. Sci. Forum 495–497, 185 (2005).CrossRefGoogle Scholar
23.Groeber, M., Haley, B., Uchic, M., Ghosh, S., AIP Conference Proceedings—Materials Processing and Design: Modeling, Simulation, and Applications, NUMIFORM (2004), p. 1712.Google Scholar
24.Uchic, M.D., Groeber, M., Wheeler, R., Scheltens, F., Dimiduk, D.M., Microsc. Microanal. 10, 1136 (2004).Google Scholar
25.Zaefferer, S., Mater. Sci. Forum 495–497, 3 (2005).Google Scholar
26.Petrov, R., Garcìa, O.L., Mulders, J.J.L., Reis, A.C.C., Bae, J.-H., Kestens, L., Houbaert, Y., Mater. Sci. Forum 550, 625 (2007).Google Scholar
27.Konrad, J., Zaefferer, S., Raabe, D., Acta Mater. 54, 1369 (2006).Google Scholar
28.Groeber, M., Haley, B., Uchic, M., Dimiduk, D.M., Ghosh, S., Mater. Charact. 57, 259 (2006).Google Scholar
29.Mathieu, J.P., Berveiller, S., Inal, K., Diard, O., Fatigue Fract. Eng. Mater. Struct. 29, 725 (2006).Google Scholar
30.Han, T.S., Dawson, P.R., Mater. Sci. Eng. A 405, 18 (2005).CrossRefGoogle Scholar
31.Dawson, P.R., Mika, D.P., Barton, N.R., Scripta Mater. 47, 713 (2002).Google Scholar
32.Chawla, N., Ganesh, V.V., Wunsch, B., Scripta Mater. 51, 161 (2004).Google Scholar
33.Chawla, N., Sidhu, R.S., J. Mater. Sci.: Mater. Electron. 18, 175 (2007).Google Scholar
34.Zaafarani, N., Raabe, D., Singh, R.N., Roters, F., Zaefferer, S., Acta Mater. 54, 1863 (2006).Google Scholar
35.Lewis, A.C., Bingert, J.F., Rowenhorst, D.J., Gupta, A., Geltmacher, A.B., Spanos, G., Mater. Sci. Eng. A 418, 11 (2006).Google Scholar
36.Spanos, G., Geltmacher, A.B., Lewis, A.C., Bingert, J.F., Mehl, M., Papaconstantopoulos, D., Mishin, Y., Gupta, A., Matic, P., Mater. Sci. Eng. A 452–453, 558 (2007).Google Scholar
37.Nakamachi, E., Tam, N.N., Morimoto, H., Int. J. Plast. 23, 450 (2007).Google Scholar
38.Uchic, M.D., Holzer, L., Inkson, B.J., Principe, E.L., Munroe, P., MRS Bull. 32, 408 (2007).Google Scholar
39.Geltmacher, A.B., Lewis, A.C., Rowenhorst, D.J., Qidwai, M.A., Spanos, G., Proceedings of the 11th World Conference on Titanium: Ti-2007 Science and Technology, Kyoto, Japan, 3 June 2007, pp. 475478.Google Scholar
40.Qidwai, M.A., Geltmacher, A.B., Lewis, A.C., Rowenhorst, D.J., Spanos, G., paper IMECE2007-42007 presented at the 2007 ASME International Mechanical Engineering Congress & Exposition (IMECE), Seattle, WA, 11 November 2007.Google Scholar
41.Langer, S.A., Fuller, E., Carter, W.C., Comput. Sci. Eng. 3, 15 (2001).CrossRefGoogle Scholar
42.Lewis, A.C., Jordan, K.A., Geltmacher, A.B., Metall. Mater. Trans. A 39A, 1109 (2008).Google Scholar
43.Cailletaud, G., Forest, S., Jeulin, D., Feyel, F., Galliet, I., Mounoury, V., Quilici, S., Comput. Mater. Sci. 27, 351 (2003).CrossRefGoogle Scholar
44.Diard, O., Leclereq, S., Rousselier, G., Cailletaud, G., Int. J. Plast. 21, 691 (2005).Google Scholar
45.Lewis, A.C., Suh, C., Stukowski, M., Geltmacher, A.B., Spanos, G., Rajan, K., JOM 58, 52 (2006).CrossRefGoogle Scholar
46.Ledbetter, H., Ogi, H., Kai, S., Kim, S., Hirao, M., J. Appl. Phys. 95, 4642 (2004).Google Scholar