Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-26T11:26:45.109Z Has data issue: false hasContentIssue false

Chemical-Vapor-Deposited Materials for High Thermal Conductivity Applications

Published online by Cambridge University Press:  31 January 2011

Get access

Extract

Chemical vapor deposition (CVD) is an attractive method for producing bulk and thin-film materials for a variety of applications. In this method, gaseous reagents condense onto a substrate and then react to produce solid materials. The materials produced by CVD are theoretically dense, highly pure, and have other superior properties.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Bryant, W.A.J. Mater. Sci. 12 (1977) p. 1285.CrossRefGoogle Scholar
2Goela, J.S. and Taylor, R.L.J. Mater. Sci. 23 (1988) p.4331.CrossRefGoogle Scholar
3Niihara, K.Ceram. Bull. 63 (1984) p.1160.Google Scholar
4Pickering, M.A.Taylor, R.L.Goela, J.S. and Desai, H.D. in Chemical Vapor Deposition of Refractory Metals and Ceramics II, edited by Besmann, T.M.Gallois, B.M. and Warren, J.W. (Mater. Res. Soc. Symp. Proc. 250, Pittsburgh, 1992) p.145.Google Scholar
5Davis, R.F. in Chemical Vapor Deposition of Refractory Metals and Ceramics, edited by Besmann, T.M. and Gallois, B.M. (Mater. Res. Soc. Symp. Proc. 168, Pittsburgh, 1990) p.145.Google Scholar
6Goela, J.S. and Taylor, R.L. in Proc., SPIE Vol. 1047 (SPIE—The International Society for Optical Engineering, Bellingham, WA, 1989) p.198.Google Scholar
7Goela, J.S.Askinazi, J. and Robinson, B. in Proc. 8th Electromagnetic Window Symp. (U.S. Air Force Academy, Colorado Springs, April 2000) p.313.Google Scholar
8Pickering, M.A. and Taylor, R.L.Fabrication of Large Mirror Substrates by Chemical Vapor Deposition, U.S. Air Force Technical Report No. AFWAL-TR-87-4016 (Wright Patterson Air Force Base, OH, April 1987).Google Scholar
9Yarbrough, W.A.J. Am. Ceram. Soc. 75 (12) (1992) p.3179.CrossRefGoogle Scholar
10Spear, K.E.J. Am. Ceram. Soc. 72 (2) (1989) p.171.CrossRefGoogle Scholar
11Wort, C.J.H. C.Pickles, S.J.Beale, A.C.Sweeney, C.G.McClymont, M.R.Sanders, R.J.Sussmann, R.S. and Lewis, K.L. in Proc., SPIE Vol. 3705 (SPIE—The International Society for Optical Engineering, Bellingham, WA, 1999) p.119.Google Scholar
12Goela, J.S. and Taylor, R.L. in Proc., SPIE Vol. 1062 (SPIE—The International Society for Optical Engineering, Bellingham, WA, 1989) p.37.Google Scholar
13Goela, J.S. and Taylor, R.L. in Proc., SPIE Vol. 1118 (SPIE—The International Society for Optical Engineering, Bellingham, WA, 1989) p.14.Google Scholar
14Goela, J.S. and Taylor, R.L.Appl. Phys. Lett. 54 (1989) p.2512.CrossRefGoogle Scholar
15Goela, J.S. and Taylor, R.L.Polycrystalline Silicon Improved Material Property Data Base for Cooled Laser Mirrors, Air Force Report No. AFWAL-TR-86-4131 (AF Wright Aeronautical Laboratories, Wright-Patterson Air Force Base, Ohio); CVD, Inc. Report No. TR-031 (March 1987).Google Scholar
16Hayashi, S.Hirai, T.Hiraga, K. and Hirabayashi, M.J.Mater. Sci. 17 (1982) p.3336.CrossRefGoogle Scholar
17Lennartz, J.W. and Dowell, M.B. in Chemical Vapor Deposition of Refractory Metals and Ceramics II, edited by Besmann, T.M.Gallois, B.M. and Warren, J.W. (Mater. Res. Soc. Symp. Proc. 250, Pittsburgh, 1992) p.161.Google Scholar
18Lee, W.Y.Strife, J.R. and Veltri, R.D.J. Am. Ceram. Soc. 75 (10) (1992) p.2803.CrossRefGoogle Scholar
19Archer, N.J.Spec. Publ.–R. Chem. Soc. 30 (1977) p.167.Google Scholar
20Matsuda, T.Nakae, H. and Hirae, T.J.Mater. Sci. 23 (1988) p.515.CrossRefGoogle Scholar
21Goela, J.S. and Askinazi, J. in Proc., SPIE Vol. 3705 (SPIE—The International Society for Optical Engineering, Bellingham, WA, 1999) p.227.Google Scholar
22Goela, J.S. and Romero, B. in Proc., SPIE Vol. 3060 (SPIE—The International Society for Optical Engineering, Bellingham, WA, 1997) p.366.Google Scholar
23Besmann, T.M. and Spear, K.E.J. Electro-chem. Soc. 124 (5)(1977) p.790.CrossRefGoogle Scholar
24Caputo, A.J.Lackey, W.J.Wright, I.G. and Angelini, P.J. Electrochem. Soc. 132 (9) (1985) p.2274.CrossRefGoogle Scholar
25Shield, V.B.Fekade, K. and Spencer, M.G.Appl. Phys. Lett. 62 (1993) p.1919.CrossRefGoogle Scholar
26Shigeta, M.Fugii, Y.Furukawa, K.Suzuki, A. and Nakajima, S.Appl. Phys. Lett. 55 (1989) p.1522.CrossRefGoogle Scholar
27Tobin, E.Magida, M.Kishner, S. and Krim, M. in Proc., SPIE Vol. 2543 (SPIE—The International Society for Optical Engineering, Bellingham, WA, 1995) p.12.Google Scholar
28Shih, C.J. and Ezis, A. in Proc., SPIE Vol.2543 (SPIE—The International Society for Optical Engineering, Bellingham, WA, 1995) p.24.Google Scholar
29Block, J.R. and Drake, R.J.Laser Foc. World 25 (8)(1989) p.97.Google Scholar
30Berman, R. in The Properties of Diamond, edited by Field, J.E. (Academic Press, London, 1979) p.3.Google Scholar
31Berman, R. P.Hudson, R.W. and Martinez, M.J.Phys. C: Solid State Phys. 8 (1975) p.L430.CrossRefGoogle Scholar
32Angus, J.C.Willis, H.A. and Stanko, W.S.J.Appl. Phys. 39 (1968) p.2915.CrossRefGoogle Scholar
33Spitsyn, B.V.Bouilov, L.L. and Deryagin, B.V.J.Cryst. Growth 52 (1981) p.219.CrossRefGoogle Scholar
34Bachmann, P.K. and Enchevort, W. van, Diamond Relat. Mater. 1 (1992) p.1021.CrossRefGoogle Scholar
35Prelas, M.A.Popovici, G. and Bigelow, L.K. eds., Handbook of Industrial Diamonds and Diamond Films (Marcel Dekker, New York, 1997).Google Scholar
36Graebner, J.E.Jin, S.Kammlott, G.W.Herb, J.A. and Gardinier, C.F.Nature 359 (1992) p.401.CrossRefGoogle Scholar
37Graebner, J.E.Reiss, M.E.Seibles, L.Hartnett, T.M.Miller, R.P. and Robinson, C.J.Phys. Rev. B 50 (1994) p.3702.CrossRefGoogle Scholar
38Bundy, F.P.Hall, H.T.Strong, H.M. and Wentorf, R.H.Nature 176 (1955) p.51.CrossRefGoogle Scholar
39Graebner, J.E.Jin, S.Kammlott, G.W.Herb, J.A. and Gardinier, C.F.Appl. Phys. Lett. 60 (1992) p.1576.CrossRefGoogle Scholar
40Katz, A. K.-Wang, W.Baiocchi, F.A.Dautremont-Smith, W.C., Lane, E.Luftman, H.S.Varma, R.R. and Curnan, H.Mater. Chem. Phys. 33 (1993) p.281.CrossRefGoogle Scholar
41Graebner, J.E.Jin, S.Herb, J.A. and Gardinier, C.F.J.Appl. Phys. 76 (1994) p.1552.CrossRefGoogle Scholar
42Touzelbaev, M.N. and Goodson, K.E.Diamond Relat. Mater. 7 (1998) p.1.CrossRefGoogle Scholar
43CVD SiC Materials Specification for Grades SC001, SC002, SC003” (Rohm and Haas Advanced Materials, Woburn, MA, September 2000).Google Scholar
44Goela, J.S. and Pickering, M.A. in Proc., SPIE Vol. CR67 (SPIE—The International Society for Optical Engineering, Bellingham, WA, 1997) p.71.Google Scholar
45Goela, J.S.Pickering, M.A.Taylor, R.L.Murray, B.W. and Lompado, A.Appl. Opt. 30 (1991) p.3166.CrossRefGoogle Scholar
46Pickering, M.A.Taylor, R.L.Keeley, J.T. and Graves, G.A.Nucl. Instrum. Methods A 291 (1990) p.95.CrossRefGoogle Scholar
47Tateyama, H.Noma, H.Adachi, Y. and Komatsu, M., Chem. Mater. 9 (1997) p.766.CrossRefGoogle Scholar
48Pujar, V.V. and Cawley, J.D.J. Am. Ceram. Soc. 80 (1997) p.1653.CrossRefGoogle Scholar
49Pujar, V.V. and Cawley, J.D.J. Am. Ceram. Soc. 78 (1995) p.774.CrossRefGoogle Scholar
50Collins, A.K.Pickering, M.A. and Taylor, R.L.J.Appl. Phys. 68 (1990) p.6510.CrossRefGoogle Scholar
51Goela, J.S.Burns, L.E. and Pickering, M.A. in Proc., SPIE Vol. 2855 (SPIE—The International Society for Optical Engineering, Bellingham, WA, 1996) p.2.Google Scholar
52Goela, J.S.Pickering, M.A. and Taylor, R.L. in Chemical Vapor Deposition of Refractory Metals and Ceramics III, edited by Gallois, B.M.Lee, W. and Pickering, M.A. (Mater. Res. Soc. Symp. Proc. 363, Pittsburgh, 1995) p.71.Google Scholar
53Goela, J.S.Pickering, M.A. and Taylor, R.L. in Proc., SPIE Vol. 1753 (SPIE—The International Society for Optical Engineering, Bellingham, WA, 1992) p.77.Google Scholar
54Gentilman, R.L. and Maguire, E.A. in Proc., SPIE Vol.315 (SPIE—The International Society for Optical Engineering, Bellingham, WA, 1981) p.131.Google Scholar
55Goela, J.S.Desai, H.Taylor, R.L. and Olson, S.E. in Proc., SPIE Vol. 2543 (SPIE—The International Society for Optical Engineering, Bellingham, WA, 1995) p.38.Google Scholar
56Collins, A.K.Keeley, J.T.Pickering, M.A. and Taylor, R.L. in Chemical Vapor Deposition of Refractory Metals and Ceramics, edited by Besmann, T.M. and Gallois, B.M. (Mater. Res. Soc. Symp. Proc. 168, Pittsburgh, 1990) p.193.Google Scholar
57Pickering, M.A. and Goela, J.S.Silicon Carbide Mirror Substrate Replication by Chemical Vapor Deposition, Rome Laboratory Technical Report No.RL-TR-94-155 (Air Force Materiel Command, Griffiss Air Force Base, New York, September 1994).Google Scholar
58Geril, N.Grigley, L.Wilson, S. and Goela, J.S. in Proc., SPIE Vol. 2478 (SPIE—The International Society for Optical Engineering, Bellingham, WA, 1995) p.215.Google Scholar
59TCTM Interim Concept Design Review” (Litton Itek Optical Systems, Lexington, MA, February 12, 1991).Google Scholar