Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-28T01:59:58.539Z Has data issue: false hasContentIssue false

Chemical Vapor Deposition of Copper for Multilevel Metallization

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

Since the birth of integrated circuitry about thirty five years ago, microelectronics design and manufacturing technologies have evolved toward higher integration density with smaller design rules. As the semiconductor industry moves into ultra-large-scale integration (ULSI), device geometries continue to shrink into the sub-half-micron region while circuit densities increase to optimize reliability and improve performance. The resulting demands on interconnect technologies necessitate the exploitation of all development avenues: design, materials, and manufacturing.

Emerging sub-half-micron technologies require multilevel metallization (MLM) design schemes that reduce interconnection lengths and lead to lower signal transmission delays and enhanced device speeds. MLM schemes also permit increased device density, due to the ability to use the third (vertical) dimension, and easier signal routing because of higher flexibility in architectural design. These schemes, in turn, demand interconnect metals that can handle the higher current densities resulting from the decreasing size of device features, without the loss of electrical and structural integrity, and deliver the sheet resistance needed to meet performance demands. They also require reliable deposition techniques to successfully fabricate the increasingly complex architectures as lateral feature sizes are scaled down more rapidly than conductor or insulator thicknesses.

Type
Copper Metallization
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Rymaszewski, E.J., J. Electron. Mater. 18 (1989) p. 217.CrossRefGoogle Scholar
2.Larrabee, G. and Chatterjee, P., Semicond. Inter. 14 (May, 1991) p. 84.Google Scholar
3.Holton, W.C., Advanced Techniques for Integrated Circuit Processing, SPIE Vol. 1392 (1990) p. 27.CrossRefGoogle Scholar
4.Shumay, W.C. Jr., Advanced Mater, and Processes 135 (1989) p. 43.Google Scholar
5.Seidel, T., in Proceedings of the Sematech Fourth Annual Sematech Centers of Excellence (SCOE) Technology Transfer Meeting (March 11, 1992) p. 121.Google Scholar
6.Lynch, W.T., SRC Newsletter 10 (1992) p. 1.Google Scholar
7. For copper(I) chemistries, see, for example: Norman, J.A.T., Muratore, B.A., Dyer, P.N., Roberts, D.A., Hochberg, A.K., and Dubois, L.H., to be published in the Proc. European Mater. Res. Soc. (Strasbourg, 1992); Fine, S.M., Dyer, PN., Norman, J.A.T., Muratore, B.A., and lampietro, R.L., in Chemical Perspectives of Microelectronic Materials II, edited by Jensen, K.F, Dubois, L.H., and Gross, M.E. (Mater. Res. Soc. Proc. 204, Pittsburgh, PA, 1991) p. 417; Jain, A., Chi, K-M., Kodas, T.T., Hampden-Smith, M.J., Farr, J.D. , and Paffett, M.F., Chem. Mater. 3 (1991) p. 995; Shin, H. K., Chi, K-M., Hampden-Smith, M.J.,Kodas, T.T. , Farr, J.D., and Paffett, M.F., Advanced Mater. 30 (1991) p. 246; Shin, H.K., Chi, K-M., Farkas, J. ,Jain, A. , Hampden-Smith, M.J., Kodas, T.T. , and Duesler, E.N. , Inorg. Chem. 6 (1992) p. 424; Griffin, G.L. , Lai, W.G., Maverick, A.W., Kumar, R. , and Ajmera, P.K., in Advanced Metallization for ULSI Applications, edited by Rana, V.V.S. , Joshi, R.V. , and Ohdomari, I. , (Mater. Res. Soc. Symp. Proc. V-7, Pittsburgh, PA, 1992) p. 367; Beach, D.B. , LeGoues, F.K. , and Hu, C-K. , Chem. Mater. 2 (1990) p. 216; M.E. Gross, J. Electrochem. Soc. 138 (1991) p. 2422.Google Scholar
8. See, for example: Hemert, R.L. Van, Spendlove, L.B., and Sievers, R.E., J. Electrochem. Soc. 112 (1965) p. 1124; Oehr, C. and Suhr, H. , Appl. Phys. A 45 (1988) p. 151; Awaya, N. and Arita, Y. , in Advanced Metallization for ULSI Applications, edited by Rana, W.S. , Joshi, R.V. , and Ohdomari, I. (Mater. Res. Soc. Symp. Proc. V-7, Pittsburgh, PA, 1992) p. 345; Harris, J. , Appl. Phys. A 47 (1988) p. 63; Poston, S. and Reisman, A. , J. Electron. Mater. 18 (1989) p. 79; Temple, D. and Reisman, R. , J. Electrochem. Soc. 136 (1989) p. 3525; Eisenbraun, E.T., Zheng, B., Li, H. , Wax, A. , Kaloyeros, A.E., Dettelbacher, C., Toscano, P. ,Murarka, S.P. , Shi, Y-T. , Olowolafe, J.F. , and Pintchovski, F. , in Advanced Metallization for ULSI Applications, edited by Rana, V.V.S. , Joshi, RV. , and Ohdomari, I. (Mater. Res. Soc. Symp. Proc. V7, Pittsburgh, PA, 1992), p. 345; Eisenbraun, E.T. , Zheng, B. , Dundon, C.P. , and Kaloyeros, A.E. , Appl. Phys. Lett. 60 (1992) p. 3126; Li, H. , Eisenbraun, E.T. , and Kaloyeros, A.E. , J. Vac. Sci. Technol. B 10 (1992) p. 1337.Google Scholar
9.Donnelly, V.M. and Gross, M.E., J. Vac. Sci. Technol. A 11 (1993) p. 66.CrossRefGoogle Scholar
10.Sievers, R.E. and Sadlowski, J.E., Science 201 (1978) p. 200.CrossRefGoogle Scholar
11.Cohen, S.L., Liehr, M., and Kasi, S., Appl. Phys. Lett. 60 (1992) p. 50.CrossRefGoogle Scholar
12.Hampden-Smith, M.J., private communication (October, 1992).Google Scholar
13. See References 7 and 8. See also Markwalder, B., Widmer, M., Braichotte, D., and van den Bergh, H., J. Appl. Phys. 65 (1989) p. 2470.CrossRefGoogle Scholar
14.Besmann, T.M., Stinton, D.P., and Lowden, R.A., MRS Bulletin 13 (1988) p. 45.CrossRefGoogle Scholar
15.Matsuno, S., Uchikawa, F., Utsunomiya, S., and Nakabayashi, S., Appl. Phys. Lett. 60 (1992) p. 2427.CrossRefGoogle Scholar
16.Zheng, B., Eisenbraun, E., Liu, J., and Kaloyeros, A.E., Appl. Phys. Lett. 61 (1992) p. 2175.CrossRefGoogle Scholar
17.Cho, C-C., in Tungsten and Other Advanced Metals for ULSI Applications in 1990, edited by Smith, G.C. and Blumenthal, R. (Materials Research Society, Pittsburgh, PA, 1991) p. 189.Google Scholar
18.Bachmann, P.K., Gartner, G., and Lydtin, H., MRS Bulletin 13 (1988) p. 52.CrossRefGoogle Scholar
19.Cohen, S.L., Liehr, M., and Kasi, S., Appl. Phys. Lett. 60 (1992) p. 50.CrossRefGoogle Scholar
20.Hardcastle, F.D., Farkas, J., Peden, C.H.F., Omstead, T.R., Biewer, R.S., Hampden-Smith, M.J., and Kodas, T.T., in Advanced Metallization for ULSI Applications, edited by Rana, V.V.S., Joshi, R.V., and Ohdomari, I. (Mater. Res. Soc. Symp. Proc. V7, Pittsburgh, PA, 1992) p. 413.Google Scholar
21.Cheek, R.W., Kelber, J.A., Fleming, J., Lujan, R.D., and Biewer, R.S., in Tungsten and Other Advanced Metals for ULSI Applications in 1990, edited by Smith, G.C. and Blumenthal, R. (Mater. Res. Soc. Symp. Proc. V6, Pittsburgh, PA, 1990) p. 99.Google Scholar
22.Kelber, J.A., Biewer, R.S., Lujan, R.D., and Gutierrez, G., in Tungsten and Other Advanced Metals for VLSI/ULSI Applications V, edited by Wong, S.S. and Furukawa, S. (Mater. Res. Soc. Symp. Proc. V5, Pittsburgh, PA, 1990) p. 345.Google Scholar
23.Lecohier, B., Calpini, B., Philippoz, J-M., Stumm, T., and van den Bergh, H., Appl. Phys. Lett. 60 (1992) p. 3114.CrossRefGoogle Scholar
24.Shin, H.K., Chi, K-M., Jain, A., Hampden-Smith, M.J., Kodas, T.T., Paffett, M.F., and Farr, I.D., in Advanced Metallization for ULSI Applications, edited by Rana, W.S., Joshi, R.V., and Ohdomari, I., (Mater. Res. Soc. Symp. Proc. V7, Pittsburgh, PA, 1992) p. 403.Google Scholar
25.Ohuchi, F.S. and Kohyama, M., J. Am. Ceram. Soc. 74 (1991) p. 1163.CrossRefGoogle Scholar
26.Dubois, L.H., Jeffries, P.M., and Girolami, G.S., in Advanced Metallization for ULSI Applications, edited by Rana, V.V.S., Joshi, R.V., and Ohdomari, I. (Mater. Res. Soc. Symp. Proc. V7, Pittsburgh, PA, 1992) p. 375.Google Scholar
27.Cho, J.S.H., Kang, H., Asano, I., and Wong, S.S., IEDM Technical Digest, December 1992, p. 297.Google Scholar
28.Awaya, N. and Arita, Y., J. Electron. Mater. 21 (1992) p. 959.CrossRefGoogle Scholar
29.Rye, R.R., Knapp, J.A., Chi, K-M., Hampdem-Smith, M.J., and Kodas, T.T., J. Appl. Phys. 72 (1992) p. 5941.CrossRefGoogle Scholar
30.Mathad, G.S., J. Instn. Electron. & Telecommun. Eng. 37 (1991) p. 194.Google Scholar
31.Hymes, S., Murarka, S.P., Shepard, C., and Lanford, W.A., J. Appl. Phys. 71 (1992) p. 4623.CrossRefGoogle Scholar
32.Li, J., Mayer, J.W., Shacham-Diamand, Y., and Colgan, E.G., Appl. Phys. Lett. 60 (1992) p. 2983.CrossRefGoogle Scholar
33.Shy, Y-T., Murarka, S.P., Shepard, C.L., and Lanford, W.A., in Advanced Metallization in Microelectronics, edited by Katz, A., Murarka, S.P., and Appelbaum, A. (Mater. Res. Soc. Symp. Proc. 181, Pittsburgh, PA, 1990) p. 537.Google Scholar
34. See, for example: Ohmi, T. and Tsubouchi, K., Solid State Technol. (April, 1992) p. 47; T. Ohmi et al., IEDM Tech. Digest 285 (1991); C.W. Park and RW Vook, Appl. Phys. Lett. 59 (1991) p. 175; H. K. Kang, J.S.H. Cho, and S.S. Wong, IEEE Electron. Device Letters 13 (1992) p. 448.Google Scholar
35.Kang, H-K., Cho, J.S.H., Asano, I., and Wong, S.S., Proc. IEEE VMIC (1992) p. 337.Google Scholar
36.Fine, S.M., Dyer, P.N., Norman, J.A.T., Muratore, B.A., and Iampietro, R.L., in Chemical Perspectives of Microelectronic Materials II, edited by Interrante, L.V., Jensen, K.F., Dubois, L.H., and Gross, M.E. (Mater. Res. Soc. Symp. Proc. 204, Pittsburgh, PA, 1991).Google Scholar
37.Jain, A., Chi, K-M., Kodas, T.T., Hampden-Smith, M.J., Farr, J.D., and Paffett, M.F., Chem. Mater. 3 (1991) p. 995.CrossRefGoogle Scholar
38.Awaya, N. and Arita, Y., in Advanced Metallization for ULSI Applications, edited by Rana, V.V.S., Joshi, R.V., and Ohdomari, I. (Mater. Res. Soc. Symp. Proc. V7, Pittsburgh, PA, 1992) p. 345.Google Scholar
39.Oehr, C. and Suhr, H., Appl. Phys. A 45 (1988) p. 151.Google Scholar
40.Norman, J.A.T., Muratore, B.A., Dyer, P.N., Roberts, D.A., Hochberg, A.K., and Dubois, L.H., Proc. European Mater. Res. Soc., Strasbourg, 1992, to be published.Google Scholar
41.Kang, H-K., Cho, J.S.H., Asano, I., and Wong, S.S., Proc. IEEE VMIC (1992) p. 337.Google Scholar