Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-27T22:21:21.454Z Has data issue: false hasContentIssue false

Chemical Interfaces: Structure, Properties, and Relaxation

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

Any finite system is delimited by interfaces. In this trivial sense interfaces are ubiquitous. However, modern epitaxial techniques seek to modify the properties of materials by the creation of interfaces. “Band gap engineering,” the attempt to tailor the electronic properties of semiconductors by interleaving many dissimilar layers, is an example of this approach. Interfaces between lattice-matched, isostructural, crystalline systems, (differing only in composition) are technologically the most advanced and thus most widely used. These “chemical” interfaces are formed by the introduction of dopant impurities, or by the stacking of dissimilar materials. Chemical interfaces formed by the epitaxial growth of dissimilar materials are the subject of this article.

A fundamental tenet of modern epitaxy is the tailoring of properties through control of structure. We will therefore outline how the “structure” of a chemical interface may be defined and experimentally determined. Determining the interfacial structure is a major experimental challenge, inextricably bound with our understanding of how structure affects other properties. The article will thus briefly discuss this vital link. We will conclude with an outline of the way chemical interfaces, in reality systems far from equilibrium, can relax, and how their relaxation mechanisms shed light on the fundamental properties of solids. Because the GaAs/AlGaAs system is the most technologically advanced, and to be concrete, we will illustrate the discussion by reference primarily to this system. Many of the concepts and experimental results, however, are more generally valid.

Type
Interfaces Part I
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Warwick, C.A., Jan, W.Y., Ourmazd, A., and Harris, T.D., Appl. Phys. Lett. 56 (1990) p. 2666.CrossRefGoogle Scholar
2.Thomsen, M. and Madhukar, A., J. Cryst. Growth 84 (1987) p. 98.CrossRefGoogle Scholar
3.Ogale, S.B., Madhukar, A., Voillot, F., Thomsen, M., Tang, W.C., Lee, T.C., Kim, J.Y., and Chen, P., Phys. Rev. B 36 (1987) p. 1662.CrossRefGoogle Scholar
4. See e.g. Spence, J.C.H., Experimental High Resolution Electron Microscopy (Oxford Univ. Press, New York, 1980).Google Scholar
5.Petroff, P.M., Cho, A.Y., Reinhart, F.K., Gossard, A.C., and Wiegmann, W., Phys. Rev. Lett. 48 (1982) p. 170.CrossRefGoogle Scholar
6.Ourmazd, A., Rentschler, J.A., and Taylor, D.W., Phys. Rev. Lett. 57 (1986) p. 3073.CrossRefGoogle Scholar
7.Ourmazd, A., Tsang, W.T., Rentschler, J.A., and Taylor, D.W., Appl. Phys. Lett. 50 (1987) p. 1417.CrossRefGoogle Scholar
8.Ourmazd, A. and Spence, J.C.H., Nature 329 (1987) p. 425.CrossRefGoogle Scholar
9.Ourmazd, A., J. Cryst. Growth 98 (1989) p. 72.CrossRefGoogle Scholar
10.Penisson, J.M., Bode, M., Baumann, F., Ourmazd, A., and Bourret, A., to be published.Google Scholar
11.Tu, C.W., Miller, R.C., Wilson, B.A., Petroff, P.M., Harris, T.D., Kopf, R.F., Sputz, S.K., and Lamont, M.G., J. Cryst. Growth 81 (North-Holland 1987) p. 159.Google Scholar
12.Miller, R.C., Tu, C.W., Sputz, S.K, and Kopf, R.F., Appl. Phys. Lett. B 49 (1986) p. 1245.CrossRefGoogle Scholar
13.Petroff, P.M., Cibert, J., Gossard, A.C., Dolan, G. J., and Tu, C.W., J. Vac. Sci. & Technol. B 5 (1987) p. 1204.CrossRefGoogle Scholar
14.Ourmazd, A., Taylor, D.W., Cunningham, J., and Tu, C.W., Phys. Rev. Lett. 62 (1989) p. 933.CrossRefGoogle Scholar
15.Ourmazd, A., Taylor, D.W., Bode, M., and Kim, Y., Science 246 (1989) p. 1571.CrossRefGoogle Scholar
16.Weisbach, C., Dingle, R., Gossard, A.C., and Wiegmann, W., Solid State Comm. 38 (1981) p. 709.CrossRefGoogle Scholar
17.Tanaka, M., Sakaki, H., and Yoshino, J., Jap. J. Appl. Phys. 25 (1986) L155.CrossRefGoogle Scholar
18.Bimberg, D., Christen, J., Fukunaga, T., Nakashima, H., Mars, D.E., and Miller, J.N., J. Vac. Sci. Technol. B 5 (1987) p. 1191.CrossRefGoogle Scholar
19.Reynolds, DC., Bajaj, K.K., Litton, C.W., Yu, P.W., Singh, J., Masselink, W.T., Fischer, R., and Morkoc, H., Appl. Phys. Lett. 46 (1985) p. 51.CrossRefGoogle Scholar
20.Sakaki, H., Noda, T., Hirakawa, K, Tanaka, M., and Matsusue, T., Appt. Phys. Lett. 51 (1987) p. 1934.CrossRefGoogle Scholar
21. See e.g., Deppe, D.G. and Holonyak, N. Jr., J. Appl. Phys. 64 (1988) R93.CrossRefGoogle Scholar
22.Kim, Y., Ourmazd, A., Bode, M., and Feldman, R.D., Phys. Rev. Lett. 63 (1989) p. 636.CrossRefGoogle Scholar
23.Kim, Y.. Ourmazd, A., Malik, R.J., and Rentschler, J.A, Proc. Mat. Res. Soc., 159 (1990) p. 351.CrossRefGoogle Scholar
24.Guido, L.J., Holonyak, N. Jr., Hsieh, K.C., and Baker, J.E., Appl. Phys. Lett. 54 (1989) p. 262.CrossRefGoogle Scholar
25.Kim, Y., Ourmazd, A., and Feldman, R.D., J. Vac. Sci. Technol. A8 (1990) p. 1116.CrossRefGoogle Scholar
26.Bode, M., Ourmazd, A., Rentschler, J.A., Hong, M., Feldman, L.C., and Mannaerts, J.P., Proc. Mat. Res. Soc., 157 (1990) p. 197.CrossRefGoogle Scholar