Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-24T02:44:45.044Z Has data issue: false hasContentIssue false

Chemical and bonding analysis of liquids using liquid cell electron microscopy

Published online by Cambridge University Press:  10 September 2020

Peter Ercius
Affiliation:
National Center for Electron Microscopy, Molecular Foundry Division, Lawrence Berkeley National Laboratory, USA; [email protected]
Jordan A. Hachtel
Affiliation:
Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, USA; [email protected]
Robert F. Klie
Affiliation:
University of Illinois at Chicago, USA; [email protected]
Get access

Abstract

Liquid cell transmission electron microscopy (TEM) has become an essential tool for studying the structure and properties of both hard and soft condensed-matter samples, as well as liquids themselves. Liquid cell sample holders, often consisting of two thin window layers separating the liquid sample from the high vacuum of the microscope column, have been designed to control in situ conditions, including temperature, voltage/current, or flow through the window region. While high-resolution and time-resolved TEM imaging probes the structure, shape, and dynamics of liquid cell samples, information about the chemical composition and spatially resolved bonding is often difficult to obtain due to the liquid thickness, the window layers, the holder configuration, or beam-induced radiolysis. In this article, we review different approaches to quantitative liquid cell electron microscopy, including recent developments to perform energy-dispersive x-ray and electron energy-loss spectroscopy experiments on samples in a liquid environment or the liquid itself. We also cover graphene liquid cells and other ultrathin window layer holders.

Type
Liquid Phase Electron Microscopy
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Marton, L., Bull. Cl. Sci. Acad. R. Belg. 20, 439 (1934).Google Scholar
Ruska, E., Kolloid-Zeitschrift 100, 212 (1942).10.1007/BF01519549CrossRefGoogle Scholar
Abrams, I.M., McBain, J.W., J. Appl. Phys. 15 607 (1944).CrossRefGoogle Scholar
Marton, L., Rep. Prog. Phys. 10, 204 (1944).CrossRefGoogle Scholar
Ross, F.M., Tersoff, J., Reuter, M.C., Phys. Rev. Lett. 95, 146104 (2005).10.1103/PhysRevLett.95.146104CrossRefGoogle Scholar
Williamson, M.J., Tromp, R.M., Vereecken, P.M., Hull, R., Ross, F.M., Nat. Mater. 2, 532 (2003).10.1038/nmat944CrossRefGoogle Scholar
Allard, L.F., Bigelow, W.C., Jose-Yacaman, M., Nackashi, D.P., Damiano, J., Mick, S.E., Microsc. Res. Tech. 72, 208 (2009).CrossRefGoogle Scholar
Zheng, H., Smith, R.K., Jun, Y.W., Kisielowski, C., Dahmen, U., Alivisatos, A.P., Science 324, 1309 (2009).CrossRefGoogle Scholar
Mehdi, B.L., Qian, J., Nasybulin, E., Park, C., Welch, D.A., Faller, R., Mehta, H., Henderson, W.A., Xu, W., Wang, C.M., Evans, J.E., Liu, J., Zhang, J.G., Mueller, K.T., Browning, N.D., Nano Lett. 15, 2168 (2015).10.1021/acs.nanolett.5b00175CrossRefGoogle Scholar
Keskin, S., de Jonge, N., Nano Lett. 18, 7435 (2018).CrossRefGoogle Scholar
Cho, H., Jones, M.R., Nguyen, S.C., Hauwiller, M.R., Zettl, A., Alivisatos, A.P., Nano Lett. 17, 414 (2017).CrossRefGoogle Scholar
Holtz, M.E., Yu, Y., Gao, J., Abruna, H.D., Muller, D.A., Microsc. Microanal. 19, 1027 (2013).10.1017/S1431927613001505CrossRefGoogle Scholar
Unocic, R.R., Baggetto, L., Veith, G.M., Agular, J.A., Unocic, K.A., Sacci, R.L., Dudney, N.J., More, K.L., Chem. Commun. 51, 16377 (2015).10.1039/C5CC07180ACrossRefGoogle Scholar
Lewis, E.A., Haigh, S.J., Slater, T.J., He, Z., Kulzick, M.A., Burke, M.G., Zaluzec, N.J., Chem. Commun. 50, 10019 (2014).Google Scholar
Wang, C., Shokuhfar, T., Klie, R.F., Adv. Mater. 28, 7716 (2016).CrossRefGoogle ScholarPubMed
Hauwiller, M.R., Ondry, J.C., Chan, C.M., Khandekar, P., Yu, J., Alivisatos, A.P., J. Am. Chem. Soc. 141, 4428 (2019).CrossRefGoogle Scholar
Aronova, M.A., Leapman, R.D., MRS Bull. 37, 53 (2012).10.1557/mrs.2011.329CrossRefGoogle Scholar
Yuk, J.M., Kim, K., Aleman, B., Regan, W., Ryu, J.H., Park, J., Ercius, P., Lee, H.M., Alivisatos, A.P., Crommie, M.F., Lee, J.Y., Zettl, A., Nano Lett. 11, 3290 (2011).CrossRefGoogle Scholar
Yuk, J.M., Park, J., Ercius, P., Kim, K., Hellebusch, D.J., Crommie, M.F., Lee, J.Y., Zettl, A., Alivisatos, A.P., Science 336, 61 (2012).CrossRefGoogle Scholar
Kelly, D.J., Zhou, M., Clark, N., Hamer, M.J., Lewis, E.A., Rakowski, A.M., Haigh, S.J., Gorbachev, R.V., Nano Lett. 18, 1168 (2018).Google Scholar
Park, J., Elmlund, H., Ercius, P., Yuk, J.M., Limmer, D.T., Chen, Q., Kim, K., Han, S.H., Weitz, D.A., Zettl, A., Alivisatos, A.P., Science 349, 290 (2015).CrossRefGoogle Scholar
Kim, B.H., Heo, J., Kim, S., Reboul, C.F., Chun, H., Kang, D., Bae, H., Hyun, H., Lim, J., Lee, H., Han, B., Hyeon, T., Alivisatos, A.P., Ercius, P., Elmlund, H., Park, J., Science 368, 60 (2020).10.1126/science.aax3233CrossRefGoogle Scholar
Yuk, J.M., Park, J., Ercius, P., Kim, K., Hellebusch, D.J., Crommie, M.F., Lee, J.Y., Zettl, A., Alivisatos, A.P., Science 336, 61 (2012).10.1126/science.1217654CrossRefGoogle Scholar
Yuk, J.M., Seo, H.K., Choi, J.W., Lee, J.Y., ACS Nano 8, 7478 (2014).10.1021/nn502779nCrossRefGoogle Scholar
De Clercq, A., Dachraoui, W., Margeat, O., Pelzer, K., Henry, C.R., Giorgio, S., J. Phys. Chem. Lett. 5, 2126 (2014).CrossRefGoogle Scholar
Wang, C., Qiao, Q., Shokuhfar, T., Klie, R.F., Adv. Mater. 26, 3410 (2014).10.1002/adma.201306069CrossRefGoogle Scholar
Donovan, A.J., Kalkowski, J., Szyrnusiak, M., Wang, C.H., Smith, S.A., Klie, R.F., Morrissey, J.H., Liu, Y., Biomacromolecules 17, 2572 (2016).10.1021/acs.biomac.6b00577CrossRefGoogle Scholar
Ribeiro, A.R., Mukherjee, A., Hu, X., Shafien, S., Ghodsi, R., He, K., Gemini-Piperni, S., Wang, C., Klie, R.F., Shokuhfar, T., Shahbazian-Yassar, R., Borojevic, R., Rocha, L.A., Granjeiro, J.M., Nanoscale 9, 10684 (2017).CrossRefGoogle Scholar
Nagamanasa, K.H., Wang, H., Granick, S., Adv. Mater. 29, 1703555 (2017).10.1002/adma.201703555CrossRefGoogle Scholar
Jokisaari, J.R., Hachtel, J.A., Hu, X., Mukherjee, A., Wang, C., Konecna, A., Lovejoy, T.C., Dellby, N., Aizpurua, J., Krivanek, O.L., Idrobo, J.-C., Klie, R.F., Adv. Mater. 30, 1802702 (2018).10.1002/adma.201802702CrossRefGoogle Scholar
Wang, H., Li, B., Kim, Y.-J., Kwon, O.-H., Granick, S., Proc. Natl. Acad. Sci. U.S.A. 117, 1283 (2020).10.1073/pnas.1916065117CrossRefGoogle Scholar
Banner, D.J., Firlar, E., Jakubonis, J., Baggia, Y., Osborn, J.K., Shahbazian-Yassar, R., Megaridis, C.M., Shokuhfar, T., Int. J. Nanomed. 15, 1929 (2020).CrossRefGoogle Scholar
Zhou, W., Yin, K., Wang, C., Zhang, Y., Xu, T., Borisevich, A., Sun, L., Idrobo, J.C., Chisholm, M.F., Pantelides, S.T., Klie, R.F., Lupini, A.R., Nature 528, E1 (2015).CrossRefGoogle Scholar
Shin, D., Park, J.B., Kim, Y.-J., Kim, S.J., Kang, J.H., Lee, B., Cho, S.-P., Hong, B.H., Novoselov, K.S., Nat. Commun. 6, 6068 (2015).10.1038/ncomms7068CrossRefGoogle Scholar
Yang, J., Alam, S.B., Yu, L., Chan, E., Zheng, H., Micron 116, 22 (2019).CrossRefGoogle Scholar
Rez, P., Aoki, T., March, K., Gur, D., Krivanek, O.L., Dellby, N., Lovejoy, T.C., Wolf, S.G., Cohen, H., Nat. Commun. 7, 10945 (2016).CrossRefGoogle Scholar
Crozier, P.A., Ultramicroscopy 180, 104 (2017).10.1016/j.ultramic.2017.03.011CrossRefGoogle Scholar
Hachtel, J.A., Lupini, A.R., Idrobo, J.C., Sci. Rep. 8, 5637 (2018).10.1038/s41598-018-23805-5CrossRefGoogle Scholar
Egerton, R.F., Electron Energy Loss Spectroscopy in the Electron Microscope, 2nd ed. (Springer Science and Business Media, New York, 2011).CrossRefGoogle Scholar
Krivanek, O.L., Dellby, N., Hachtel, J.A., Idrobo, J.C., Hotz, M.T., Plotkin-Swing, B., Bacon, N.J., Bleloch, A.L., Corbin, G.J., Hoffman, M.V., Meyer, C.E., Lovejoy, T.C., Ultramicroscopy 203, 60 (2019).CrossRefGoogle Scholar
Krivanek, O.L., Lovejoy, T.C., Dellby, N., Aoki, T., Carpenter, R.W., Rez, P., Soignard, E., Zhu, J.T., Batson, P.E., Lagos, M.J., Egerton, R.F., Crozier, P.A., Nature 514, 209 (2014).CrossRefGoogle Scholar
Crozier, P.A., Aoki, T., Liu, Q., Ultramicroscopy 169, 30 (2016).10.1016/j.ultramic.2016.06.008CrossRefGoogle Scholar
Haiber, D.M., Crozier, P.A., ACS Nano 12, 5463 (2018).CrossRefGoogle Scholar
Hachtel, J.A., Huang, J., Popovs, I., Jansone-Popova, S., Keum, J.K., Jakowski, J., Lovejoy, T.C., Dellby, N., Krivanek, O.L., Idrobo, J.C., Science 363, 525 (2019).CrossRefGoogle Scholar
Hachtel, J.A., Lupini, A.R., Idrobo, J.C., Sci. Rep. 8, 5637 (2018).CrossRefGoogle Scholar
Battaglia, M., Contarato, D., Denes, P., Doering, D., Giubilato, P., Kim, T.S., Mattiazzo, S., Radmilovic, V., Zalusky, S., Nucl. Instrum. Methods Phys. Res. A 598, 642 (2009).10.1016/j.nima.2008.09.029CrossRefGoogle Scholar
Grob, P., Bean, D., Typke, D., Li, X., Nogales, E., Glaeser, R.M., Ultramicroscopy 133, 1 (2013).CrossRefGoogle Scholar
Battaglia, M., Contarato, D., Denes, P., Giubilato, P., Nucl. Instrum. Methods Phys. Res. A 608, 363 (2009).10.1016/j.nima.2009.07.017CrossRefGoogle Scholar
Nogales, E., Nat. Methods 13, 24 (2016).10.1038/nmeth.3694CrossRefGoogle Scholar
Li, X., Mooney, P., Zheng, S., Booth, C.R., Braunfeld, M.B., Gubbens, S., Agard, D.A., Cheng, Y., Nat. Methods 10, 584 (2013).CrossRefGoogle Scholar
Ophus, C., Microsc. Microanal. 25, 563 (2019).10.1017/S1431927619000497CrossRefGoogle Scholar
Zachman, M.J., Tu, Z., Choudhury, S., Archer, L.A., Kourkoutis, L.F., Nature 560, 345 (2018).CrossRefGoogle Scholar
Zheng, H., Smith, R.K., Jun, Y.-w., Kisielowski, C., Dahmen, U., Alivisatos, A.P., Science 324, 1309 (2009).CrossRefGoogle Scholar
Xie, Y., Sohn, S., Wang, M., Xin, H., Jung, Y., Shattuck, M.D., O'Hern, C.S., Schroers, J., Cha, J.J., Nat. Commun. 10, 915 (2019).CrossRefGoogle Scholar
Ciston, J., Johnson, I.J., Draney, B.R., Ercius, P., Fong, E., Goldschmidt, A., Joseph, J.M., Lee, J.R., Mueller, A., Ophus, C., Selvarajan, A., Skinner, D.E., Stezelberger, T., Tindall, C.S., Minor, A.M., Denes, P., Microsc. Microanal. 25, 1930 (2019).CrossRefGoogle Scholar
Egerton, R.F., Micron 119, 72 (2019).CrossRefGoogle Scholar
de Jonge, N., Ross, F.M., Nat. Nanotechnol. 6, 695 (2011).CrossRefGoogle Scholar
de Jonge, N., Peckys, D.B., Kremers, G.J., Piston, D.W., Proc. Natl. Acad. Sci. U.S.A. 106, 2159 (2009).CrossRefGoogle Scholar
Cho, H., Jones, M.R., Nguyen, S.C., Hauwiller, M.R., Zettl, A., Alivisatos, A.P., Nano Lett. 17, 414 (2017).CrossRefGoogle Scholar
Keskin, S., de Jonge, N., Nano Lett. 18, 7435 (2018).CrossRefGoogle Scholar
Chen, Q., Smith, J.M., Rasool, H.I., Zettl, A., Alivisatos, A.P., Faraday Discuss. 175, 203 (2014).CrossRefGoogle Scholar
Park, J., Park, H., Ercius, P., Pegoraro, A.F., Xu, C., Kim, J.W., Han, S.H., Weitz, D.A., Nano Lett. 15, 4737 (2015).CrossRefGoogle Scholar
Egerton, R.F., Ultramicroscopy 180, 115 (2017).CrossRefGoogle Scholar
Hage, F.S., Kepaptsoglou, D.M., Ramasse, Q.M., Allen, L.J., Phys. Rev. Lett. 122, 016103 (2019).CrossRefGoogle Scholar
Venkatraman, K., Levin, B.D.A., March, K., Rez, P., Crozier, P.A., Nat. Phys. 15, 1237 (2019).CrossRefGoogle Scholar
Hage, F.S., Radtke, G., Kepaptsoglou, D.M., Lazzeri, M., Ramasse, Q.M., Science 367, 1124 (2020).CrossRefGoogle Scholar
Gomes, P.J., Ferraria, A.M., Botelho do Rego, A.M., Hoffmann, S.V., Ribeiro, P.A., Raposo, M., J. Phys. Chem. B 119, 5404 (2015).CrossRefGoogle Scholar
Rez, P., Aoki, T., March, K., Gur, D., Krivanek, O.L., Dellby, N., Lovejoy, T.C., Wolf, S.G., Cohen, H., Nat. Commun. 7, 10945 (2016).CrossRefGoogle Scholar
Ross, F.M., Liquid Cell Electron Microscopy (Cambridge University Press, Cambridge, UK, 2016).10.1017/9781316337455CrossRefGoogle Scholar
Dwyer, J.R., Harb, M., Appl. Spectrosc. 71, 2051 (2017).CrossRefGoogle Scholar
Walde, P., Ichikawa, S., Biomol. Eng 18, 143 (2001).CrossRefGoogle Scholar
Chiu, D.T., Wilson, C.F., Ryttsen, F., Stromberg, A., Farre, C., Karlsson, A., Nordholm, S., Gaggar, A., Modi, B.P., Moscho, A., Garza-Lopez, R.A., Orwar, O., Zare, R.N., Science 283, 1892 (1999).CrossRefGoogle Scholar
Hoppe, S.M., Sasaki, D.Y., Kinghorn, A.N., Hattar, K., Langmuir 29, 9958 (2013).10.1021/la401288gCrossRefGoogle Scholar
Yang, J., Choi, M.K., Sheng, Y., Jung, J., Bustillo, K., Chen, T., Lee, S.-W., Ercius, P., Kim, J.H., Warner, J.H., Chan, E.M., Zheng, H., Nano Lett. 19, 1788 (2019).CrossRefGoogle Scholar
Lindner, J., Vöhringer, P., Pshenichnikov, M.S., Cringus, D., Wiersma, D.A., Mostovoy, M., Chem. Phys. Lett. 421, 329 (2006).CrossRefGoogle Scholar
Nagae, H., Kuki, M., Zhang, J.-P., Sashima, T., Mukai, Y., Koyama, Y., J. Phys. Chem. A 104, 4155 (2000).CrossRefGoogle Scholar
Tulip, P.R., Clark, S.J., Phys. Rev. B 71, 195117 (2005).CrossRefGoogle Scholar
Terrones, H., Corro, E.D., Feng, S., Poumirol, J.M., Rhodes, D., Smirnov, D., Pradhan, N.R., Lin, Z., Nguyen, M.A.T., Elías, A.L., Mallouk, T.E., Balicas, L., Pimenta, M.A., Terrones, M., Sci. Rep. 4, 4215 (2014).CrossRefGoogle Scholar