Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-12T21:36:35.527Z Has data issue: false hasContentIssue false

Characterization of the Pore Structure of Membranes

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

A better understanding of membrane microstructure and its role in the mechanisms of different separation processes is important in the development of new and more complex types of membranes. This understanding is particularly significant in the case of inorganic membranes because the permeation and separation properties are determined by the porous properties of this microstructure, which in turn is controlled by the synthesis route. This review will cover three topics: first, the origin and development of porosity in inorganic materials; second, the general definitions and terminology used to describe porous media; and third, a brief description of several techniques that can provide pore-structure characteristics of membranes.

A distinction will be made between two techniques: static and dynamic methods. Dynamic methods are based on membrane permeation characteristics and are used routinely to assess membrane performance. This review, however, will be restricted to static methods, which can provide details of porous microstructure directly. These include the following: stereology (microscopic techniques such as scanning electron microscopy [SEM]); intrusive methods (e.g., mercury porosimetry, physisorption of gases, calorimetrie methods, and nuclear magnetic resonance [NMR] analysis); and nonintrusive methods (e.g., radiation scattering with neutrons and x-rays, wave propagation, ion-beam analysis, and positron lifetime spectroscopy). Finally, the suitability of these techniques in the characterization of membrane pore structure will be discussed.

Porous materials can be formed in several ways, although the following three are most important in the synthesis of membrane structures.

Type
Membranes and Membrane Processes
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Hsieh, H.P., in Inorganic Membranes, Synthesis, Characteristics and Applications, edited by Bhave, R.R. (Van Nostrand Reinhold, New York, 1991) p. 64.CrossRefGoogle Scholar
2.Burggraaf, A.J., in Fundamentals of Inorganic Membrane Science and Technology, edited by Burggraaf, A.J. and Cot, L. (Elsevier, Amsterdam, 1996) p. 21.CrossRefGoogle Scholar
3.Cuperus, F.P. and Smolders, C.A., Adv. Colloid I. Sci. 34 (1991) p. 135.CrossRefGoogle Scholar
4.Rouquerol, J., Avnir, D., Fairbridge, C.W., Everett, D.H., Haynes, J.H., Pernicone, N., Ramsay, J.D.F., Sing, K.S.W., and Unger, K.K., Pure Appl. Chem. 66 (8) (1994) p. 1739.CrossRefGoogle Scholar
5.Neimark, A.V., in Multifunctional Mesoporous Inorganic Solids, NATO ASI Series C, vol. 400, edited by Sequeira, C.A.C. and Hudson, M.J. (Kluwer Academic Publishers, The Netherlands, 1993) p. 27.CrossRefGoogle Scholar
6.Gregg, S.J. and Sing, K.S.W., Adsorption, Surface Area and Porosity, 2nd ed. (Academic Press, London, 1982).Google Scholar
7.Kim, K.J., Stevens, P.V., and Fane, A.G., J. Membr. Sci. 93 (1994) p. 79.CrossRefGoogle Scholar
8.Zeman, L. and Denault, L., J. Membr. Sci. 71 (1992) p. 221.CrossRefGoogle Scholar
9.Zeman, L., J. Membr. Sci. 71 (1992) p. 233.CrossRefGoogle Scholar
10.Julbe, A. and Ramsay, J.D.F., in Fundamentals of Membrane Science and Technology, edited by Burggraaf, A.J. and Cot, L. (Elsevier, Amsterdam, 1996) p. 67.CrossRefGoogle Scholar
11.Binning, G., Quate, C.F., and Gerber, C., Phys. Rev. Lett. 56 (1986) p. 930.CrossRefGoogle Scholar
12.Bottino, A., Capannelli, G., Grosso, A., Monticelli, O., Cavalleri, O., Rolandi, R., and Soria, R., J. Membr. Sci. 95 (1994) p. 289.CrossRefGoogle Scholar
13.Bowen, W.R., Hilal, N., Lovitt, R.W., and Williams, P.M., J. Membr. Sci. 110 (1996) p. 233.CrossRefGoogle Scholar
14.Sing, K.S.W., Everett, D.H., Haul, R.A.W., Moscou, L., Pierotti, R.A., Rouquerol, J., and Siemieniewska, T., Pure Appl. Chem. 57 (1985) p. 603.CrossRefGoogle Scholar
15.Hietala, S.L., Smith, D.M., Hietala, V.M., Frye, G.C., and Martin, S.J., Langmuir 9 (1993) p. 249.CrossRefGoogle Scholar
16.Liu, H., Zhang, L., and Seaton, N.A., J. Colloid. I. Sci. 156 (1993) p. 285.CrossRefGoogle Scholar
17.Tsakiroglou, C.D. and Payatakes, A.C., in Studies in Surface Science and Catalysis, vol. 62, edited by Rodriguez-Reinoso, F., Rouquerol, J., Sing, K.S.W., and Unger, K.K. (Elsevier, Amsterdam, 1991) p. 169.Google Scholar
18.Romanos, G.E., Kikkinides, E.S., Kanellopoulos, N., Ramsay, J.D.F., Langlois, P., and Kallus, S., in Fundamentals of Adsorption 6, edited by Meunier, F. (Elsevier, Amsterdam, 1998) p. 1077.Google Scholar
19.Brun, M., Lallemand, A., Quinson, J.F., and Eyraud, C., Thennochim. Acta 21 (1977) p. 59.CrossRefGoogle Scholar
20.Brun, M., Lallemand, A., Quinson, J.F., and Eyraud, C., J. Chim. Phys. 6 (1973) p. 979.CrossRefGoogle Scholar
21.Zeman, L., Tkacik, G., and le Parlouer, P., J. Membr. Sci. 32 (1987) p. 329.CrossRefGoogle Scholar
22.Cuperus, F.P., Bargeman, D., and Smolders, C.A., J. Membr. Sci. 66 (1992) p. 45.CrossRefGoogle Scholar
23.Glaves, C.L. and Smith, D.M., J. Membr. Sci. 46 (1989) p. 167.CrossRefGoogle Scholar
24.Corner, W.C., Weist, E.L., Ito, T., and Fraissard, J., J. Phys. Chem. 93 (1989) p. 4138.Google Scholar
25.Demarquay, J. and Fraissard, J., J. Chem. Phys. Lett. 136 (1987) p. 314.CrossRefGoogle Scholar
26.Julbe, A., Balzer, C., Barthez, J.M., Guizard, C., Larbot, A., and Cot, L., J. Sol-Gel Sci. Technol. 4 (1995) p. 89.CrossRefGoogle Scholar
27.Guinier, A. and Fournet, G., Small Angle Scattering of X-rays (John Wiley & Sons, New York, 1995).Google Scholar
28.Booth, B.O. and Ramsay, J.D.F., in Proc. RILEM/CNR Int. Symp. on Principles and Applications of Pore Structural Characterisation, edited by Haynes, M.J. and Doria, P.R. (J.W. Arrowsmith, Bristol, 1985) p. 97.Google Scholar
29.Ramsay, J.D.F., Adv. Colloid I. Sci. 76–77 (1998) p. 13.CrossRefGoogle Scholar
30.Matsumoto, A., Kaneko, K., and Ramsay, J.D.F., in Studies in Surface Science and Catalysis, vol. 80, edited by Suzuki, M. (Elsevier, Amsterdam, 1993) p. 405.Google Scholar
31.Rigden, J.S., Dore, J.C., and North, A.N., Studies in Surface Science and. Catalysis, vol. 87, edited by Rouquerol, J., Rodriguez-Reinoso, F., Sing, K.S.W., and Unger, K.K. (Elsevier, Amsterdam, 1994) p. 263.Google Scholar
32.Auvray, L., Ayral, A., Dabadie, T., Cot, L., Guizard, C., and Ramsay, J.D.F., Faraday Discuss. Chem. Soc. 101 (1995) p. 235.CrossRefGoogle Scholar
33.Azzam, R.M.A. and Bashara, N.M., Ellipsometry and Polarized Light (North Holland, Amsterdam, 1977).Google Scholar
34.Amin, K.E., Am. Ceram. Soc. Bull. (1) (1995) p. 7.Google Scholar
35.Huang, W. and Rokhlin, S.I., Mater. Eval. 11 (1993) p. 1279.Google Scholar
36.Armitage, B.H., Bradey, F.P., and Ramsay, J.D.F., Nucl. Instrum. Methods 149 (1978) p. 329.CrossRefGoogle Scholar
37.Keddie, J.L. and Giannelis, E.P., J. Am. Ceram. Soc. 73 (10) (1990) p. 3106.CrossRefGoogle Scholar
38.Shaefer, H.E., Wurschum, R., Birringer, R., and Gleiter, H., Phys. Rev. B 38 (14) (1988) p. 9545.CrossRefGoogle Scholar
39.Dolveck, J.Y., Dai, G.H., Moser, P., Pineri, M., and Escoubes, M., Mater. Sci. Forum 105–110 (1992) p. 1549.CrossRefGoogle Scholar
40.Zerda, T.W., Hoang, G., Miller, B., Quarles, C.A., and Orcel, G., in Better Ceramics Through Chemistry III, edited by Brinker, C.J., Clark, D.E., and Ulrich, D.R. (Mater. Res. Soc. Symp. Proc. 121, Pittsburgh, 1988) p. 653.Google Scholar