Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-24T08:35:48.532Z Has data issue: false hasContentIssue false

Characterization and nanopatterning of organically functionalized graphene with ultrahigh vacuum scanning tunneling microscopy

Published online by Cambridge University Press:  14 July 2011

Qing Hua Wang
Affiliation:
Massachusetts Institute of Technology, Cambridge, MA 02139, USA; [email protected]
Mark C. Hersam
Affiliation:
Materials Science and Engineering, Northwestern University, Evanston, IL 60208-3108 USA; [email protected]
Get access

Abstract

With exceptional carrier mobilities, mechanical strength, and optical transparency, graphene is a leading material for next-generation electronic devices. However, for most applications, graphene will need to be integrated with other materials, which motivates efforts to understand and tune its surface chemistry. In particular, the modification of graphene via organic functionalization holds promise for tuning the electronic properties of graphene, controlling interfaces with other materials, and tailoring surface chemical reactivity. Toward these ends, this article reviews recent work from our laboratory on noncovalent and covalent organic functionalization of graphene. Using ultrahigh vacuum scanning tunneling microscopy (UHV STM), the molecular ordering and electronic properties of organic adlayers on graphene are characterized at the molecular scale. In addition, UHV STM is employed to nanopattern these organic layers with sub-5 nm resolution, thus providing a pathway for producing graphene-based heteromolecular nanostructures.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Geim, A.K., Novoselov, K.S., Nat. Mater. 6, 183 (2007).CrossRefGoogle Scholar
2.Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Katsnelson, M.I., Grigorieva, I.V., Dubonos, S.V., Firsov, A.A., Nature 438, 197 (2005).CrossRefGoogle Scholar
3.Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A., Science 306, 666 (2004).CrossRefGoogle Scholar
4.Bolotin, K.I., Sikes, K.J., Jiang, Z., Klima, M., Fudenberg, G., Hone, J., Kim, P., Stormer, H.L., Solid State Commun. 146, 351 (2008).CrossRefGoogle Scholar
5.Castro Neto, A.H., Guinea, F., Peres, N.M.R., Novoselov, K.S., Geim, A.K., Rev. Mod. Phys. 81, 109 (2009).CrossRefGoogle Scholar
6.Lee, C., Wei, X., Kysar, J.W., Hone, J., Science 321, 385 (2008).CrossRefGoogle Scholar
7.Nair, R.R., Blake, P., Grigorenko, A.N., Novoselov, K.S., Booth, T.J., Stauber, T., Peres, N.M.R., Geim, A.K., Science 320, 1308 (2008).CrossRefGoogle Scholar
8.Cai, W.W., Moore, A.L., Zhu, Y.W., Li, X.S., Chen, S.S., Shi, L., Ruoff, R.S., Nano Lett. 10, 1645 (2010).CrossRefGoogle Scholar
9.Ruoff, R., Nat. Nanotechnol. 3, 10 (2008).CrossRefGoogle Scholar
10.Geim, A.K., Science 324, 1530 (2009).CrossRefGoogle Scholar
11.Niyogi, S., Bekyarova, E., Itkis, M.E., McWilliams, J.L., Hamon, M.A., Haddon, R.C., J. Am. Chem. Soc. 128, 7720 (2006).CrossRefGoogle Scholar
12.Niyogi, S., Hamon, M.A., Hu, H., Zhao, B., Bhowmik, P., Sen, R., Itkis, M.E., Haddon, R.C., Acc. Chem. Res. 35, 1105 (2002).CrossRefGoogle Scholar
13.Bahr, J.L., Tour, J.M., J. Mater. Chem. 12, 1952 (2002).CrossRefGoogle Scholar
14.Han, M.Y., Ozyilmaz, B., Zhang, Y.B., Kim, P., Phys. Rev. Lett. 98, 206805 (2007).CrossRefGoogle Scholar
15.Son, Y.W., Cohen, M.L., Louie, S.G., Phys. Rev. Lett. 97, 216803 (2006).CrossRefGoogle Scholar
16.Son, Y.W., Cohen, M.L., Louie, S.G., Nature 444, 347 (2006).CrossRefGoogle Scholar
17.Masubuchi, S., Ono, M., Yoshida, K., Hirakawa, K., Machida, T., Appl. Phys. Lett. 94, 082107 (2009).CrossRefGoogle Scholar
18.Jiao, L., Wang, X., Diankov, G., Wang, H., Dai, H., Nat. Nanotechnol. 5, 321 (2010).CrossRefGoogle Scholar
19.Kosynkin, D.V., Higginbotham, A.L., Sinitskii, A., Lomeda, J.R., Dimiev, A., Price, B.K., Tour, J.M., Nature 458, 872 (2009).CrossRefGoogle Scholar
20.Li, X.L., Wang, X.R., Zhang, L., Lee, S.W., Dai, H.J., Science 319, 1229 (2008).CrossRefGoogle Scholar
21.Ritter, K.A., Lyding, J.W., Nat. Mater. 8, 235 (2009).CrossRefGoogle Scholar
22.Foley, E.T., Yoder, N.L., Guisinger, N.P., Hersam, M.C., Rev. Sci. Instrum. 75, 5280 (2004).CrossRefGoogle Scholar
23.Baluch, A.S., Guisinger, N.P., Basu, R., Foley, E.T., Hersam, M.C., J. Vac. Sci. Technol., A 22, L1 (2004).CrossRefGoogle Scholar
24.Basu, R., Guisinger, N.P., Greene, M.E., Hersam, M.C., Appl. Phys. Lett. 85, 2619 (2004).CrossRefGoogle Scholar
25.Basu, R., Kinser, C.R., Tovar, J.D., Hersam, M.C., Chem. Phys. 326, 144 (2006).CrossRefGoogle Scholar
26.Basu, R., Lin, J.C., Kim, C.Y., Schmitz, M.J., Yoder, N.L., Kellar, J.A., Bedzyk, M.J., Hersam, M.C., Langmuir 23, 1905 (2007).CrossRefGoogle Scholar
27.Basu, R., Tovar, J.D., Hersam, M.C., J. Vac. Sci. Technol., B 23, 1785 (2005).CrossRefGoogle Scholar
28.Greene, M.E., Guisinger, N.P., Basu, R., Baluch, A.S., Hersam, M.C., Surf. Sci. 559, 16 (2004).CrossRefGoogle Scholar
29.Guisinger, N.P., Basu, R., Baluch, A.S., Hersam, M.C., Ann. N.Y. Acad. Sci. 1006, 227 (2003).CrossRefGoogle Scholar
30.Guisinger, N.P., Basu, R., Greene, M.E., Baluch, A.S., Hersam, M.C., Nanotechnology 15, S452 (2004).CrossRefGoogle Scholar
31.Guisinger, N.P., Elder, S.P., Yoder, N.L., Hersam, M.C., Nanotechnology 18, 044011 (2007).CrossRefGoogle Scholar
32.Guisinger, N.P., Greene, M.E., Basu, R., Baluch, A.S., Hersam, M.C., Nano Lett. 4, 55 (2004).CrossRefGoogle Scholar
33.Guisinger, N.P., Yoder, N.L., Elder, S.P., Hersam, M.C., J. Phys. Chem. C 112, 2116 (2008).CrossRefGoogle Scholar
34.Guisinger, N.P., Yoder, N.L., Hersam, M.C., Proc. Natl. Acad. Sci. U.S.A. 102, 8838 (2005).CrossRefGoogle Scholar
35.Hersam, M.C., Reifenberger, R.G., MRS Bull. 29, 385 (2004).CrossRefGoogle Scholar
36.Jin, H., Kinser, C.R., Bertin, P.A., Kramer, D.E., Libera, J.A., Hersam, M.C., Nguyen, S.T., Bedzyk, M.J., Langmuir 20, 6252 (2004).CrossRefGoogle Scholar
37.Kellar, J.A., Lin, J.C., Kim, J.H., Yoder, N.L., Bevan, K.H., Stokes, G.Y., Geiger, F.M., Nguyen, S.T., Bedzyk, M.J., Hersam, M.C., J. Phys. Chem. C 113, 2919 (2009).CrossRefGoogle Scholar
38.Walsh, M.A., Hersam, M.C., Annu. Rev. Phys. Chem. 60, 193 (2009).CrossRefGoogle Scholar
39.Walsh, M.A., Hersam, M.C., Chem. Commun. 46, 1153 (2010).CrossRefGoogle Scholar
40.Walsh, M.A., Walter, S.R., Bevan, K.H., Geiger, F.M., Hersam, M.C., J. Am. Chem. Soc. 132, 3013 (2010).CrossRefGoogle Scholar
41.Wang, B., Zheng, X.L., Michl, J., Foley, E.T., Hersam, M.C., Bilic, A., Crossley, M.J., Reimers, J.R., Hush, N.S., Nanotechnology 15, 324 (2004).CrossRefGoogle Scholar
42.Wang, Q.H., Hersam, M.C., J. Am. Chem. Soc. 130, 12896 (2008).CrossRefGoogle Scholar
43.Wang, Q.H., Hersam, M.C., Small 4, 915 (2008).CrossRefGoogle ScholarPubMed
44.Yoder, N.L., Fakonas, J.S., Hersam, M.C., J. Am. Chem. Soc. 131, 10059 (2009).CrossRefGoogle Scholar
45.Yoder, N.L., Guisinger, N.P., Hersam, M.C., Jorn, R., Kaun, C.C., Seideman, T., Phys. Rev. Lett. 97, 187601 (2006).CrossRefGoogle Scholar
46.Berger, C., Song, Z.M., Li, T.B., Li, X.B., Ogbazghi, A.Y., Feng, R., Dai, Z.T., Marchenkov, A.N., Conrad, E.H., First, P.N., de Heer, W.A., J. Phys. Chem. B 108, 19912 (2004).CrossRefGoogle Scholar
47.Berger, C., Song, Z.M., Li, X.B., Wu, X.S., Brown, N., Naud, C., Mayou, D., Li, T.B., Hass, J., Marchenkov, A.N., Conrad, E.H., First, P.N., de Heer, W.A., Science 312, 1191 (2006).CrossRefGoogle Scholar
48.de Heer, W.A., Berger, C., Wu, X.S., Sprinkle, M., Hu, Y., Ruan, M., Stroscio, J.A., First, P.N., Haddon, R., Piot, B., Faugeras, C., Potemski, M., Moon, J.S., J. Phys. D: Appl. Phys. 43, 374007 (2010).CrossRefGoogle Scholar
49.Lin, Y.M., Dimitrakopoulos, C., Jenkins, K.A., Farmer, D.B., Chiu, H.Y., Grill, A., Avouris, P., Science 327, 662 (2010).CrossRefGoogle Scholar
50.Hass, J., de Heer, W.A., Conrad, E.H., J. Phys. Condens. Matter 20, 323202 (2008).CrossRefGoogle Scholar
51.Lauffer, P., Emtsev, K.V., Graupner, R., Seyller, T., Ley, L., Reshanov, S.A., Weber, H.B., Phys. Rev. B 77, 155426 (2008).CrossRefGoogle Scholar
52.Hossain, M.Z., Walsh, M.A., Hersam, M.C., J. Am. Chem. Soc. 132, 15399 (2010).CrossRefGoogle Scholar
53.Wang, Q.H., Hersam, M.C., Nat. Chem. 1, 206 (2009).CrossRefGoogle Scholar
54.Wang, Q.H., Hersam, M.C., Nano Lett. 11, 589 (2011).CrossRefGoogle Scholar
55.Kellar, J.A., Alaboson, J.M.P., Wang, Q.H., Hersam, M.C., Appl. Phys. Lett. 96, 143103 (2010).CrossRefGoogle Scholar
56.Schedin, F., Geim, A.K., Morozov, S.V., Hill, E.W., Blake, P., Katsnelson, M.I., Novoselov, K.S., Nat. Mater. 6, 652 (2007).CrossRefGoogle Scholar
57.Wang, X.R., Li, X.L., Zhang, L., Yoon, Y., Weber, P.K., Wang, H.L., Guo, J., Dai, H.J., Science 324, 768 (2009).CrossRefGoogle Scholar
58.Dong, X.C., Fu, D.L., Fang, W.J., Shi, Y.M., Chen, P., Li, L.J., Small 5, 1422 (2009).CrossRefGoogle Scholar
59.Lauffer, P., Emtsev, K.V., Graupner, R., Seyller, T., Ley, L., Phys. Status Solidi B 245, 2064 (2008).CrossRefGoogle Scholar
60.Pinto, H., Jones, R., Goss, J.P., Briddon, P.R., J. Phys. Condens. Matter 21, 3 (2009).Google Scholar
61.Chen, W., Chen, S., Qi, D.C., Gao, X.Y., Wee, A.T.S., J. Am. Chem. Soc. 129, 10418 (2007).CrossRefGoogle Scholar
62.Stankovich, S., Dikin, D.A., Dommett, G.H.B., Kohlhaas, K.M., Zimney, E.J., Stach, E.A., Piner, R.D., Nguyen, S.T., Ruoff, R.S., Nature 442, 282 (2006).CrossRefGoogle Scholar
63.Zhou, S.Y., Gweon, G.H., Fedorov, A.V., First, P.N., de Heer, W.A., Lee, D.H., Guinea, F., Neto, A.H.C., Lanzara, A., Nat. Mater. 6, 770 (2007).CrossRefGoogle Scholar
64.Gierz, I., Riedl, C., Starke, U., Ast, C.R., Kern, K., Nano Lett. 8, 4603 (2008).CrossRefGoogle Scholar
65.Kessler, B.M., Girit, Ç.Ö., Zettl, A., Bouchiat, V., Phys. Rev. Lett. 104, 047001 (2010).CrossRefGoogle Scholar
66.Farmer, D.B., Chiu, H.Y., Lin, Y.M., Jenkins, K.A., Xia, F.N., Avouris, P., Nano Lett. 9, 4474 (2009).CrossRefGoogle Scholar
67.Farmer, D.B., Golizadeh-Mojarad, R., Perebeinos, V., Lin, Y.M., Tulevski, G.S., Tsang, J.C., Avouris, P., Nano Lett. 9, 388 (2009).CrossRefGoogle Scholar
68.Farmer, D.B., Lin, Y.M., Afzali-Ardakani, A., Avouris, P., Appl. Phys. Lett. 94, 213106 (2009).CrossRefGoogle Scholar
69.Xia, F.N., Farmer, D.B., Lin, Y.M., Avouris, P., Nano Lett. 10, 715 (2010).CrossRefGoogle Scholar
70.Pirkle, A., Wallace, R.M., Colombo, L., Appl. Phys. Lett. 95, 133106 (2009).CrossRefGoogle Scholar
71.Robinson, J.A., LaBella, M., Trumbull, K.A., Weng, X.J., Cavelero, R., Daniels, T., Hughes, Z., Hollander, M., Fanton, M., Snyder, D., ACS Nano 4, 2667 (2010).CrossRefGoogle Scholar
72.Wang, X.R., Tabakman, S.M., Dai, H.J., J. Am. Chem. Soc. 130, 8152 (2008).CrossRefGoogle Scholar
73.Green, A.A., Hersam, M.C., Nano Lett. 9, 4031 (2009).CrossRefGoogle Scholar
74.Green, A.A., Hersam, M.C., J. Phys. Chem. Lett. 1, 544 (2009).CrossRefGoogle Scholar
75.Liang, Y.Y., Wu, D.Q., Feng, X.L., Mullen, K., Adv. Mater. 21, 1679 (2009).CrossRefGoogle Scholar
76.Eremtchenko, M., Schaefer, J.A., Tautz, F.S., Nature 425, 602 (2003).CrossRefGoogle Scholar
77.Schmitz-Hübsch, T., Fritz, T., Sellam, F., Staub, R., Leo, K., Phys. Rev. B 55, 7972 (1997).CrossRefGoogle Scholar
78.Hoshino, A., Isoda, S., Kurata, H., Kobayashi, T., J. Appl. Phys. 76, 4113 (1994).CrossRefGoogle Scholar
79.Forrest, S.R., Chem. Rev. 97, 1793 (1997).CrossRefGoogle Scholar
80.Huang, H., Chen, S., Gao, X.Y., Chen, W., Wee, A.T.S., ACS Nano 3, 3431 (2009).CrossRefGoogle Scholar
81.Kendrick, C., Kahn, A., Forrest, S.R., Appl. Surf. Sci. 104/105, 586 (1995).Google Scholar
82.Rochefort, A., Wuest, J.D., Langmuir 25, 210 (2009).CrossRefGoogle Scholar
83.Tian, X.Q., Xu, J.B., Wang, X.M., J. Phys. Chem. C 114, 20917 (2010).CrossRefGoogle Scholar
84.Alaboson, J.M.P., Wang, Q.H., Emery, J.D., Lipson, A.L., Bedzyk, M.J., Elam, J.W., Pellin, M.J., Hersam, M.C., ACS Nano; DOI: 10.1021/nn201414d.Google Scholar
85.Kaneda, Y., Stawasz, M.E., Sampson, D.L., Parkinson, B.A., Langmuir 17, 6185 (2001).CrossRefGoogle Scholar
86.Emery, J.D., Wang, Q.H., Zarrouati, M., Fenter, P., Hersam, M.C., Bedzyk, M.J., Surf. Sci. (2010); DOI: 10.1016/j.susc.2010.11.008.Google Scholar
87.Hummers, W.S., Offeman, R.E., J. Am. Chem. Soc. 80, 1339 (1958).CrossRefGoogle Scholar
88.Dreyer, D.R., Park, S., Bielawski, C.W., Ruoff, R.S., Chem. Soc. Rev. 39, 228 (2010).CrossRefGoogle Scholar
89.Compton, O.C., Nguyen, S.T., Small 6, 711 (2010).CrossRefGoogle Scholar
90.Elias, D.C., Nair, R.R., Mohiuddin, T.M.G., Morozov, S.V., Blake, P., Halsall, M.P., Ferrari, A.C., Boukhvalov, D.W., Katsnelson, M.I., Geim, A.K., Novoselov, K.S., Science 323, 610 (2009).CrossRefGoogle Scholar
91.Guisinger, N.P., Rutter, G.M., Crain, J.N., First, P.N., Stroscio, J.A., Nano Lett. 9, 1462 (2009).CrossRefGoogle Scholar
92.Ryu, S., Han, M.Y., Maultzsch, J., Heinz, T.F., Kim, P., Steigerwald, M.L., Brus, L.E., Nano Lett. 8, 4597 (2008).CrossRefGoogle Scholar
93.Sessi, P., Guest, J.R., Bode, M., Guisinger, N.P., Nano Lett. 9, 4343 (2009).CrossRefGoogle Scholar
94.Bekyarova, E., Itkis, M.E., Ramesh, P., Berger, C., Sprinkle, M., de Heer, W.A., Haddon, R.C., J. Am. Chem. Soc. 131, 1336 (2009).CrossRefGoogle Scholar
95.Niyogi, S., Bekyarova, E., Itkis, M.E., Zhang, H., Shepperd, K., Hicks, J., Sprinkle, M., Berger, C., Lau, C.N., de Heer, W.A., Conrad, E.H., Haddon, R.C., Nano Lett. 10, 4061 (2010).CrossRefGoogle Scholar
96.Fan, X.Y., Nouchi, R., Yin, L.C., Tanigaki, K., Nanotechnology 21, 475208 (2010).CrossRefGoogle Scholar
97.Choi, J., Kim, K.-J., Kim, B., Lee, H., Kim, S., J. Phys. Chem. C 113, 9433 (2009).CrossRefGoogle Scholar
98.Choi, J., Lee, H., Kim, K.-J., Kim, B., Kim, S., J. Phys. Chem. Lett. 1, 505 (2009).CrossRefGoogle Scholar
99.Quintana, M., Spyrou, K., Grzelczak, M., Browne, W.R., Rudolf, P., Prato, M., ACS Nano 4, 3527 (2010).CrossRefGoogle Scholar
100.Bekyarova, E., Itkis, M.E., Ramesh, P., Haddon, R.C., Phys. Status Solidi RRL 3, 184 (2009).CrossRefGoogle Scholar
101.Eves, B.J., Sun, Q.-Y., Lopinski, G.P., Zuilhof, H., J. Am. Chem. Soc. 126, 14318 (2004).CrossRefGoogle Scholar
102.Bai, J.W., Zhong, X., Jiang, S., Huang, Y., Duan, X.F., Nat. Nanotechnol. 5, 190 (2010).CrossRefGoogle Scholar
103.Kim, M., Safron, N.S., Han, E., Arnold, M.S., Gopalan, P., Nano Lett. 10, 1125 (2010).CrossRefGoogle Scholar
104.Weng, L.S., Zhang, L.Y., Chen, Y.P., Rokhinson, L.P., Appl. Phys. Lett. 93, (2008).CrossRefGoogle Scholar
105.Wei, Z.Q., Wang, D.B., Kim, S., Kim, S.Y., Hu, Y.K., Yakes, M.K., Laracuente, A.R., Dai, Z.T., Marder, S.R., Berger, C., King, W.P., de Heer, W.A., Sheehan, P.E., Riedo, E., Science 328, 1373 (2010).CrossRefGoogle Scholar
106.Alaboson, J.M.P., Wang, Q.H., Kellar, J.A., Park, J., Elam, J.W., Pellin, M.J., Hersam, M.C., Adv. Mater. 23, 2181 (2011).CrossRefGoogle Scholar
107.Hersam, M.C., Guisinger, N.P., Lyding, J.W., Nanotechnology 11, 70 (2000).CrossRefGoogle Scholar
108.Stokbro, K., Thirstrup, C., Sakurai, M., Quaade, U., Hu, B.Y.-K., Perez-Murano, F., Grey, F., Phys. Rev. Lett. 80, 2618 (1998).CrossRefGoogle Scholar