Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-12T22:45:05.219Z Has data issue: false hasContentIssue false

Characterization and Control of Compact Microstructure

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

The microstructure and properties of a ceramic component are largely predetermined by the processes and process controls used to manufacture them. The metric for success in manufacturing is often based on gross density. For example, optimizing pressure-density response, maximizing overall density, and minimizing springback and delaminations in powder pressing all focus on characterization and control of the overall (macroscopic) state of a powder compact. Unfortunately this focus on macroscopic effects has contributed to a general neglect of the compact at the microstructural level. Process-control variables in powder compaction have been defined and discussed by many workers, but their quantitative application to predict and control compaction behavior is limited. Advances in characterization technology and computer modeling now allow us to quantitatively characterize and simulate microstructures more easily. These and other tools can help provide the scientific and technological foundation necessary to predict and control microstructure and microstructural evolution during processing.

Type
Compaction Science and Technology
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Evans, A.G., J. Am. Ceram. Soc. 13 (1982) p. 127.CrossRefGoogle Scholar
2.Exner, H.E., Sintering Key Papers, edited by Somiya, S. and Moriyoshi, Y. (Elsevier Applied Science, 1990).Google Scholar
3.Coble, R.L., J. Appl. Phys. 13 (1961) p. 793.CrossRefGoogle Scholar
4.Ozkan, N. and Briscoe, B.J., J. Euro. Ceram. Soc. 13 (1994) p. 143.CrossRefGoogle Scholar
5.Ozkan, N. and Briscoe, B.J., Ceram. Int. in press.Google Scholar
6.Phillips, D.H. and Lannutti, J.J., NDT&E Int., 13 (1997) p. 339.CrossRefGoogle Scholar
7.Scherer, G.W., J. Am. Ceram. Soc. 13 (1984) p. 709.CrossRefGoogle Scholar
8.German, R.M. and Bulger, M., Int. J. Powder Metall. 13 (1992) p. 301.Google Scholar
9.Evans, A.G., J. Am. Ceram. Soc. 13 (1982) p. 497.CrossRefGoogle Scholar
10.Kellett, B. and Lange, F.F., J. Am. Ceram. Soc. 13 (1984) p. 369.CrossRefGoogle Scholar
11.Deis, T.A. and Lannutti, J.J., J. Am. Ceram. Soc. in press.Google Scholar
12.Nies, C.W. and Messing, G.L., J. Am. Ceram. Soc. 13 (1984) p. 301.CrossRefGoogle Scholar
13.Nies, C.W. and Messing, G.L., in Ceramic Transactions, vol. 9, edited by Mangels, J.A. (American Ceramic Society, 1983) p. 58.Google Scholar
14.Forscheimer, P., Z. Oest. Ing. Arch. Ver. 13 (1882) p. 11.Google Scholar
15.Philips, C.E.S., Proc. R. Inst. 13 (1910) p. 742.Google Scholar
16.Yarnton, D., Int. J. Powder Metall. 13 (1977) p. 189.Google Scholar
17.Kostelnik, M.C., Kludt, F.H., and Beddow, J.K., Int. J. Powder Metall. 13 (1968) p. 19.Google Scholar
18.Cooper, A.R.J. and Eaton, L.E., J. Am. Ceram. Soc. 13 (1962) p. 97.CrossRefGoogle Scholar
19.van Groenou, A.B., Powder Technol. 13 (1981) p. 221.CrossRefGoogle Scholar
20.Strijbos, S., Sci. Ceram. 13 (1976) p. 415.Google Scholar
21.Strijbos, S., Powder Technol. 13 (1977) p. 209.CrossRefGoogle Scholar
22.Shapiro, I., Mater. Sci. Eng. 13 (1985) p. 33.Google Scholar
23.Janssen, H.A., Z. Ver. Deutsch. Ing. 13 (1895) p. 1045.Google Scholar
24.Baishin, M.Y., Vestnik Metalloprom. 18 (1938) p. 124.Google Scholar
25.Rakowski, V.S., Fundamental Considerations in the Production of Hard Alloys, Part I (Moscow-Leningrad, 1935) p. 59.Google Scholar
26.Duwez, P. and Zwell, L., Metall. Trans. 13 (1949) p. 137.Google Scholar
27.Train, D., Trans. Inst. Chem. Eng. 13 (1957) p. 258.Google Scholar
28.Kamm, R., Steinberg, M.A., and Wulff, J., J. Trans. AIME 13 (1949) p. 694.Google Scholar
29.Kuczynski, G.C. and Zaplatynskyj, I., Metall. Trans. 13 (1956) p. 215.Google Scholar
30.Cooper, A.R. and Goodnow, W.H., Am. Ceram. Soc. Bull. 13 (1962) p. 760.Google Scholar
31.McRitchie, F.H., Am. Ceram. Soc. Bull. 13 (1964) p. 501.Google Scholar
32.Akpan, E., Image Analysis Techniques for Characterizing Density, Defects, Inclusions and Grain Size in P/M Parts, No. 1-235-248 (Metal Powder Industries Federation, Princeton, NJ, 1991).Google Scholar
33.Kunesch, J., Kaysser, W.A., and Petzow, G., Pressing and Sintering Defects in Powder Mixtures, No. 1-245-258 (Metal Powder Industries Federation, Princeton, NJ, 1992).Google Scholar
34.Garino, T., Mahoney, M., Readey, M., Ewsuk, K., Gieske, J., Stoker, G., and Min, S., in Diversity Into the Next Century Conf., Int. SAMPE Tech. Conf. Ser., No. 27, edited by Martinez, R.J., Arris, H., Emerson, J.E., and Pike, G. (SAMPE International, Covina, CA, 1995) p. 610.Google Scholar
35.Turba, E., Proc. Br. Ceram. Soc. 13 (1965) p. 101.Google Scholar
36.Rajab, M. and Coleman, D.S., Powder Metall. 13 (1985) p. 207.CrossRefGoogle Scholar
37.Kandeil, A. and DeMalherbe, M., Powder Technol. 13 (1977) p. 253.CrossRefGoogle Scholar
38.Brown, S.B. and Weber, G.G.A., Modern Developments in Powder Metallurgy 18–21 (1988) p. 465.Google Scholar
39.Sawicka, B.D. and Palmer, B.J.F., Nucl. Instrum. Methods Phys. Res. A263 (1988) p. 525.CrossRefGoogle Scholar
40.Phillips, D.H. and Lannutti, J.J., Am. Ceram. Soc. Bull. 13 (1993) p. 69.Google Scholar
41.Phillips, D.H. and Lannutti, J.J., Visions Spring/Summer (1993) p. 2.Google ScholarPubMed
42.Phillips, D.H., MS thesis, The Ohio State University, 1995.Google Scholar
43.Lannutti, J.J., Deis, T.A., Kong, C.M., and Phillips, D.H., Am. Ceram. Soc. Bull. 13 (1997) p. 53.Google Scholar
44.Isozaki, K. and Ogawa, M., Am. Ceram. Soc. Bull. 13 (1993) p. 95.Google Scholar
45.Ozkan, N., Briscoe, B.J., and Aydin, I., The 1994 IChemE Research Event, vol. 2 (1994) p. 695.Google Scholar
46.Khuri-Yakub, B.T., Kino, G.S., and Evans, A.G., J. Am. Ceram. Soc. 13 (1980) p. 65.CrossRefGoogle Scholar
47.Kendall, K., Br. Ceram. Trans. J. 89 (1990) p. 211.Google Scholar
48.Oksanen, M. and Luukkala, M., in Review of Progress in Quantitative NDE, edited by Thompson, D.O. and Chimenti, D.E. (Plenum Press, New York, 1990) p. 1149.Google Scholar
49.Ellingson, W.A., Ackerman, J.L., Garrido, L., Weyand, J.D., and DeMilla, R.A., Ceram. Eng. Sci. Proc. 7/8 (1987) p. 503.CrossRefGoogle Scholar
50.Schwartz, E.G. and Weinstein, A.S., J. Am. Ceram. Soc. 13 (1965) p. 346.CrossRefGoogle Scholar
51.Thompson, R.A., Am. Ceram. Soc. Bull. 13 (1981) p. 237.Google Scholar
52.Thompson, R.A., Am. Ceram. Soc. Bull. 13 (1981) p. 244.Google Scholar
53.Thompson, R.A., Am. Ceram. Soc. Bull. 13 (1981) p. 248.Google Scholar
54.Jinka, A.G., Lewis, R.W., and Gethin, D.T., Finite Element Simulation of Powder Compaction via the Flow Formulation, No. 1-123-144 (Metal Powder Industries Federation, Princeton, NJ, 1991).Google Scholar
55.Mori, K., Numerical Methods in Industrial Forming Processes (1992) p. 69.Google Scholar
56.Riedel, H. and Sun, D.Z., Numerical Methods in Industrial Forming Processes (1992) p. 883.Google Scholar
57.Vakhrouchev, A.V. and Vakhroucheva, L.L., Numerical Methods in Industrial Forming Processes (1992) p. 887.Google Scholar
58.Häggblad, H-Å. and McEwan, K., Numerical Methods in Industrial Forming Processes (1992) p. 875.Google Scholar
59.Tamura, S., Aizawa, T., and Kihara, J., in Powder Metallurgy World Congress, edited by Capus, J.M. and German, R.M. (Metal Powder Industries Federation, San Francisco, 1992) p. 29.Google Scholar
60.Abou-Chedid, G. and Brown, S.B., On the Mechanical Behavior of Metal Powder Compaction, No. 1-1-27 (Metal Powder Industries Federation, Princeton, NJ, 1992).Google Scholar
61.Nakagawa, T. and Sato, M., Simulation of Powder Densification in Die Compaction Process, No. 1-43-57 (Metal Powder Industries Federation, Princeton, NJ, 1992).Google Scholar
62.Zahrah, T.F. and Christodoulou, L., Modeling and Design of P/M Consolidation Processes, No. 1-77-173 (Metal Powder Industries Federation, Princeton, NJ, 1993).Google Scholar
63.Gethin, D.T., Lewis, R.W., Tran, D.V., and Ariffin, A.K., Finite Element Modeling of Multilevel Compaction of Powders, No. 1-13-32 (Metal Powder Industries Federation, Princeton, NJ, 1994).Google Scholar
64.Armstrong, A., Godby, V., Rachakonda, V.B.S., Cheng, S., and McCabe, T.J., Finite Element Modeling of Cold Powder Compaction, No. 1-165-173 (Metal Powder Industries Federation, Princeton, NJ, 1993).Google Scholar
65.Briscoe, B.J. and Sinha, S., Tribology Int. in press.Google Scholar
66.Phillips, D.H. and Lannutti, J.J., in 19th Annu. Conf. Composites Advanced Ceram. Mater. (American Ceramic Society, Cocoa Beach, FL, 1995).Google Scholar
67.Kingery, W.D., Bowen, H.K., and Uhlmann, D.R., Introduction to Ceramics, No. 1368-374 (John Wiley & Sons, New York, 1976).Google Scholar