Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-24T08:33:02.190Z Has data issue: false hasContentIssue false

Carbon nanotube transparent conducting films

Published online by Cambridge University Press:  20 October 2011

Chunming Niu*
Affiliation:
Unidym, Inc., 1244 Reamwood, Sunnyvale, CA 92089, USA; [email protected]
Get access

Abstract

Carbon nanotubes (CNTs) are high aspect ratio conducting nanocylinders possessing unprecedented mechanical, thermal, optical, and electronic properties. They are ideal building blocks for use in assembling a randomly oriented, highly connected nanoporous network. When this network is deposited on top of a substrate surface as a thin film with a thickness in the range of 10–100 nm, it becomes a transparent conducting film—an ubiquitous material, currently dominated by tin-doped indium oxide (ITO). This article reviews recent progress in CNT transparent conducting films and discusses fundamental properties of CNTs important for the formation of these films, methods for CNT dispersion and assembling CNTs into transparent conducting films, properties of the CNT transparent conducting films, and issues remaining to be solved in order to make these films a commercially viable alternative to ITO.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Hecht, D., Hu, L.-B., Irvin, G., Adv. Mater. 78, 1 (2011).Google Scholar
2.Hu, L.-B., Hecht, D., Gruner, G., Chem. Rev. 110, 5790 (2010).CrossRefGoogle Scholar
3.Roth, S., Park, H.J., Chem. Soc. Rev. 39, 2477 (2010).CrossRefGoogle Scholar
4.Granqvist, C.G., Sol. Energy Mater. Sol. Cells 91, 1529 (2007).CrossRefGoogle Scholar
5.Shibuta, D., U.S. Patent 5,853,877 (1998).Google Scholar
6.Dresselhaus, M.S., Dresselhaus, G., Eklund, P.C., Science of Fullerenes and Carbon Nanotubes (Academic Press, San Diego, CA, 1996).Google Scholar
7.Wilder, J.W.G., Venema, L.C., Rinzler, A.G., Smalley, R.E., Dekker, C., Nature 391 (6662), 59 (1998).CrossRefGoogle Scholar
8.Thess, A., Lee, R., Nikolaev, P., Dai, H.J., Petit, P., Robert, J., Xu, C.H., Lee, Y.H., Kim, S.G., Rinzler, A.G., Colbert, D.T., Scuseria, G.E., Tomanek, D., Fischer, J.E., Smalley, R.E., Science 273, 483 (1996).CrossRefGoogle Scholar
9.Coleman, J.N., Adv. Funct. Mater. 19, 3680 (2009).CrossRefGoogle Scholar
10.Israelachvili, J., Intermolecular and Surface Forces (Academic Press, London, UK, 1991).Google Scholar
11.Yoshida, H., Sugai, T., Shinohara, H., J. Phys. Chem. C 112, 19908 (2008).CrossRefGoogle Scholar
12.Niu, C.-M., “Carbon nanotube network transparent electrode for organic solar cells,” 3rd workshop on Sustainable Energy Future: Focus on Organic Photovoltaics, ORNL, 2010.Google Scholar
13.Iijima, S., Ichihashi, T., Nature 363, 603 (1993).CrossRefGoogle Scholar
14.Bethune, D.S., Kiang, C.H., Sde Vries, M., Gorman, G., Savoy, R., Vazquez, J., Bayers, R., Nature 363, 605 (1993).CrossRefGoogle Scholar
15.Guo, T., Nikolaev, P., Thess, A., Colbert, D.T., Smalley, R.E., Chem. Phys. Lett. 243, 491 (1995).CrossRefGoogle Scholar
16.Nikolaev, P., Bronikowski, M.J., Bradley, R.K., Rohmund, F., Colbert, D.T., Smith, K.A., Smalley, R.E., Chem. Phys. Lett. 313, 91 (1999).CrossRefGoogle Scholar
17.Howard, J.B., McKinnon, J.T., Makarovsky, Y., LaFleur, A.L., Johnson, M.E., Nature 352, 139 (1991).CrossRefGoogle Scholar
18.Hafner, J.H., Bronikowski, M.J., Azamian, B.R., Nikolaev, P., Rinzler, A.G., Colbert, D.T., Smith, K.A., Smalley, R.E., Chem. Phys. Lett. 296, 195 (1998).CrossRefGoogle Scholar
19.Qi, H., Qian, C., Liu, J., J. Chem. Mater. 18, 5691 (2006).CrossRefGoogle Scholar
20.Zolyomi, V., Rusznyak, A., Kurti, J., Gali, A., Simon, F., Kuzmany, K., Szabados, A., Surjan, P.R., Phys. Status Solidi B 243, 3476 (2006).CrossRefGoogle Scholar
21.Zhang, M., Fang, S.-L., Zakhidov, A.A., Lee, S.B., Aliev, A.E., Williams, C.D., Atkinson, K.R., Baughman, R.H., Science 309, 1215 (309).CrossRefGoogle Scholar
22.Feng, C., Liu, K., Wu, J.-S., Liu, L., Cheng, J.-S., Zhang, Y.-Y., Sun, Y.-H., Li, Q.-Q., Fan, S.-S., Jiang, K.-L., Adv. Funct. Mater. 20, 885 (2010).CrossRefGoogle Scholar
23.Jiang, K.L., Li, Q.-Q., Fan, S.-S., Nature 419, 801 (2002).CrossRefGoogle Scholar
24.Niu, C.-M., Sichel, E.K., Hoch, R., Moy, D., Tennent, H., Appl. Phys. Lett. 70, 1480 (1997).CrossRefGoogle Scholar
25.Fu, K.-F., Sun, Y.-P., J. Nanosci. Technol. 3 (5), 351 (2003).Google Scholar
26.Ham, H.T., Choi, Y.S., Chung, I.J., J. Colloid Sci. 286, 216 (2005).CrossRefGoogle Scholar
27.Liu, J., Casavant, M.J., Cox, M., Walters, D.A., Boul, P., Lu, W., Rimberg, A.J., Smith, K.A., Colbert, D.T., Smalley, R.E., Chem. Phys. Lett. 303, 125 (1999).CrossRefGoogle Scholar
28.Ausman, K.D., Piner, R., Lourie, O., Ruoff, R.S., Korobov, M., J. Phys. Chem. B 104, 8911 (2000).CrossRefGoogle Scholar
29.Bahr, J.L., Mickelson, E.T., Bronikowski, M.J., Smalley, R.E., Tour, J.M., Chem. Commun. 193 (2001).CrossRefGoogle Scholar
30.Landi, B.J., Ruf, J.H., Worman, J.J., Raffaelle, R.P., J. Phys. Chem. B 108, 17089 (2004).CrossRefGoogle Scholar
31.Bergin, S.D., Sun, Z.-Y., Streich, P., Hamilton, J., Colman, J.N., J. Phys. Chem. C 114, 231 (2010).CrossRefGoogle Scholar
32.Moore, V.C., Strano, M.S., Haroz, E.H., Hauge, R.H., Smalley, R.E., Schmidt, J., Talmon, Y., Nano Lett. 3, 1379 (2003).CrossRefGoogle Scholar
33.Matarredona, O., Rhoads, H., Li, Z.R., Harwell, J.H., Balzano, L., Resasco, D.E., J. Phys. Chem. B 107, 13357 (2203).CrossRefGoogle Scholar
34.Tan, Y.-Q., Resasco, D.E., J. Phys. Chem. B 109, 14454 (2005).CrossRefGoogle Scholar
35.Wu, Z.-C., Chen, Z.-H., Du, X., Logan, J.L., Sippel, J., Nikolou, M., Kamaras, K., Renolds, J.R., Tanner, D.B., Hebard, A.F., Rinzler, A.G., Science 305, 1273 (2004).CrossRefGoogle Scholar
36.Hu, L.-B., Hecht, D.S., Grüner, G., Nano Lett. 4, 2513 (2004).CrossRefGoogle Scholar
37.Meitl, M., Zhou, Y., Gaur, A., Jeon, S., Usrey, M., Strano, M., Rogers, J., Nano Lett. 4, 1643 (2004).CrossRefGoogle Scholar
38.Jo, J.W., Jung, J.W., Lee, J.U., Jo, W.H., ACS Nano 4, 5382 (2010).CrossRefGoogle Scholar
39.Pei, S.-F., Du, J.-H., Zheng, Y., Liu, C., Cheng, H.-M., Nanotechnology 20, 235707 (2009).CrossRefGoogle Scholar
40.Spotnitz, M.E., Ryan, D., Stone, H.A., Mater. Chem. 14, 1299 (2004).CrossRefGoogle Scholar
41.Sreekumar, T.V., Liu, T., Kumar, S., Ericson, L.M., Hauge, R.H., Smalley, R.E., Chem. Mater. 15, 175 (2003).CrossRefGoogle Scholar
42.Haempgen, M., Duesberg, G.S., Roth, S., Appl. Surf. Sci. 252, 425 (2005).CrossRefGoogle Scholar
43.Dan, B., Irvin, G.C., Pasquali, M., ACS Nano 4, 853 (2009).Google Scholar
44.Hu, L.-B., Hecht, D.S., Gruner, G., Nano Lett. 4, 2513 (2004).CrossRefGoogle Scholar
45.Zhou, Y.-X., Hu, L.-B., Gruner, G., Appl. Phys. Lett. 88, 123109 (2006).CrossRefGoogle Scholar
46.Buzicka, B., Degiorgi, L., Gaal, R., Thien-Nga, L., Bacsa, R., Salvetat, J.P., Forro, L., Phys. Rev. B 61, 2468 (2000).Google Scholar
47.Hecht, D.S., Heintz, A.M., Lee, R., Hu, L.-B., Moore, B., Cucksey, C., Risser, S., Nanotechnology 21, 155202 (2010).Google Scholar
48.Kaempgen, M., Duesberg, G.S., Roth, S., Appl. Surf. Sci. 252, 425 (2005).CrossRefGoogle Scholar
49.Green, A.A., Hersam, M.C., Nano Lett. 8, 1417 (2008).CrossRefGoogle Scholar
50.Parekh, B.B., Fanchini, G., Eda, G., Chhowalla, M., Appl. Phys. Lett. 90, 121913 (2007).CrossRefGoogle Scholar
51.Yu, X., Rajamani, R., Stelson, K.A., Cui, T., Surf. Coat. Technol. 202, 2002 (2007).CrossRefGoogle Scholar
52.Rowley, L.A., Spath, T.M., Irvin, G.C., Am. Chem. Soc. 232, 130 (2006).Google Scholar
53.Geng, H.Z., Kim, K.K., So, K.P., Lee, Y.S., Chang, Y., Lee, Y.H., J. Am. Chem. Soc. 129, 7758 (2007).CrossRefGoogle Scholar
54.Jackson, R., Domercq, B., Jain, R., Kippelen, B., Graham, S., Adv. Funct. Mater. 18, 2548 (2008).CrossRefGoogle Scholar
55.Kim, S.M., Jo, Y.W., Kim, K.K., Duong, D.L., Shin, H.-J., Han, J.H., Choi, J.-Y., Kong, J., Lee, Y.H., ACS Nano 4, 6998 (2010).CrossRefGoogle Scholar
56.Hecht, D., Hu, L.-B., Gruner, G., Appl. Phys. Lett. 89, 133112 (2006).CrossRefGoogle Scholar
57.Hu, L.-B., Hecht, D.S., Gruner, G., Appl. Phys. Lett. 94, 081103 (2009).CrossRefGoogle Scholar
58.Sierros, K.A., Hecht, D.S., Banerjee, D.A., Morris, N.J., Hu, L., Irvin, G.C., Lee, R.S., Cairns, D.R., Thin Solid Films 518, 6977 (2010).CrossRefGoogle Scholar
59.Hecht, D., Thomas, D., Ladous, C., Lam, T., Park, Y.-B., Irvin, G., Drzaic, P., J. SID 17, 943 (2009).Google Scholar
60.Schindler, A., Schau, P., Fruehauf, N., J. SID 17, 863 (2009).Google Scholar
61.Contreras, M., Barnes, T., van de Lagemaat, J., Rumbles, G., Coutts, T.J., Weeks, C., Glatkowski, P., Peltola, J., 2006 IEEE 4th World Conference on PV Energy Conversion (WCPEC-4), Waikoloa, HI, 1–12 May 2006.Google Scholar
62.Aquirre, C.M., Auvray, S., Pigeon, S., Izquierdo, R., Desjardins, P., Martel, R., Appl. Phys. Lett. 88, 183104 (2006).CrossRefGoogle Scholar
63.Ou, E., Hu, L.-B., Raymond, G., Soo, O., Pan, J., Zheng, Z., Park, Y., Hecht, D.S., ACS Nano 3 (8), 2258 (2009).CrossRefGoogle Scholar
64.Barnes, T.M., Bergeson, J.D., Tenent, R.C., Larson, B.A., Teeter, G., Jones, K.M., Blackburn, J.L., van de Lagemaat, J., Appl. Phys. Lett. 96, 243309 (2010).CrossRefGoogle Scholar