Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-24T15:50:41.455Z Has data issue: false hasContentIssue false

Carbon nanomaterial commercialization: Lessons for graphene from carbon nanotubes

Published online by Cambridge University Press:  23 November 2012

David Arthur
Affiliation:
SouthWest NanoTechnologies, Inc.; [email protected]
Ricardo Prada Silvy
Affiliation:
SouthWest NanoTechnologies, Inc.; [email protected]
Philip Wallis
Affiliation:
SouthWest NanoTechnologies, Inc.; [email protected]
Yongqiang Tan
Affiliation:
SouthWest NanoTechnologies, Inc.; [email protected]
John-David R. Rocha
Affiliation:
School of Chemistry & Materials Science, Rochester Institute of Technology; [email protected]
Daniel Resasco
Affiliation:
School of Chemical, Biological and Materials Engineering, University of Oklahoma, and SouthWest NanoTechnologies, Inc.; [email protected]
Robert Praino
Affiliation:
CHASM Technologies Inc.; [email protected]
William Hurley
Affiliation:
CHASM Technologies Inc.; [email protected]
Get access

Abstract

Whereas efforts toward graphene commercialization are still in their early stages, lessons from the commercialization of carbon nanotubes (CNTs) might be applicable, given the similarities between the two materials (specifically, a single-walled CNT can be thought of as a monolayer of graphene wrapped into a cylinder). This article reviews the commercialization of CNT materials (with a special emphasis on single-walled CNTs) in selected electronics applications, including specific examples of successes, failures, and promising opportunities. Two application areas are reviewed: (1) alternatives to silicon for fabricating transistors used in display backplanes, radio-frequency identification, and smart cards, for example, and (2) alternatives to indium tin oxide for transparent conductive films used in displays, electronic paper for e-readers, touch sensors, light-emitting diode lighting, photovoltaics, and electrochromic windows. Some important lessons learned from these commercialization experiences can potentially help accelerate the commercialization of other exciting nanomaterials such as graphene.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Boren, N., Chan, V., Musso, C., McKinsey Chem. Rep. Spring, 12 (2012).Google Scholar
Jansen, R., Wallis, P., Mater. Matters 4 (1), 23 (2009).Google Scholar
Chamness, L., “Semiconductor Materials Market to Surpass $50 Billion in 2013, ” (SEMI, San Jose, CA, 2012); available atwww.semi.org/en/node/43361 (accessed October 2012).Google Scholar
Bethune, D.S., Kiang, C.H., De Vries, M., Gorman, G., Savoy, R., Vazquez, J., Beyers, R., Nature 363, 605 (1993).CrossRefGoogle Scholar
Thess, A., Lee, R., Nikolaev, P., Dai, H.J., Petit, P., Robert, J., Xu, C.H., Lee, Y.H., Kim, S.G., Rinzler, A.G., Colbert, D.T., Scuseria, G.E., Tomanek, D., Fischer, J.E., Smalley, R.E., Science 273, 483 (1996).CrossRefGoogle Scholar
Hu, H., Yu, A., Kim, E., Zhao, B., Itkis, M.E., Bekyarova, E., Haddon, R.C., J. Phys. Chem. B 109, 11520 (2005).CrossRefGoogle Scholar
CNTRENE® Carbon Nanotube Solution, www.brewerscience.com/carbon-nanotube (accessed October 2012).Google Scholar
Nikolaev, P., Bronikowski, M.J., Bradley, R.K., Rohmund, F., Colbert, D.T., Smith, K.A., Smalley, R.E., Chem. Phys. Lett. 313, 91 (1999).CrossRefGoogle Scholar
Kitiyanan, B., Alvarez, W.E., Harwell, J.H., Resasco, D.E., Chem. Phys. Lett. 317, 497 (2000).CrossRefGoogle Scholar
Bronikowski, M.J., Willis, P.A., Colbert, D.T., Smith, K.A., Smalley, R.E., J. Vac. Sci. Technol. A 19, 1800 (2001).CrossRefGoogle Scholar
Moisala, A., Nasibulin, A.G., Kauppinen, E.I., J. Phys.: Condens. Matter 15, S3011 (2003).Google Scholar
Bachilo, S.M., Strano, M.S., Kittrell, C., Hauge, R.H., Smalley, R.E., Weisman, R.B., Science 298, 2361 (2002).CrossRefGoogle Scholar
Bachilo, S.M., Balzano, L., Herrera, J.E., Pompeo, F., Resasco, D.E., Weisman, R.B., J. Am. Chem. Soc. 125, 11186 (2003).CrossRefGoogle Scholar
Naumov, A.V., Kuznetsov, O.A., Harutyunyan, A.R., Green, A.A., Hersam, M.C., Resasco, D.E., Nikolaev, P.N., Weisman, R.B., Nano Lett. 9, 3203 (2009).CrossRefGoogle Scholar
Blake, P., Brimicombe, P.D., Nair, R.R., Booth, T.J., Jiang, D., Schedin, F., Ponomarenko, L.A., Morozov, S.V., Gleeson, H.F., Hill, E.W., Geim, A.K., Novoselov, K.S., Nano Lett. 8 (6), 1704 (2008).CrossRefGoogle Scholar
Li, X., Cai, W., An, J., Kim, S., Nah, J., Yang, D., Science, 324 (1), 1 (2009).Google Scholar
Allen, M.J., Tung, V.C., Kaner, R.B., Chem. Rev. 110 (1), 132 (2010).CrossRefGoogle Scholar
Printed, Organic & Flexible Electronics Forecasts, Players & Opportunities 2012–2022, (IDTechEx, Cambridge, MA, 2012).Google Scholar
OLED Technology Report (NPD DisplaySearch, Santa Clara, CA, 2012).Google Scholar
Rouhi, N., Jain, D., Burke, P.J., ACS Nano 5 (11), 8471 (2011).CrossRefGoogle Scholar
Miyata, Y., Shiozawa, K., Asada, Y., Ohno, Y., Kitaura, R., Mizutani, T., Shinohara, H., Nano Res. 4 (10), 963 (2011).CrossRefGoogle Scholar
Cao, Q., Rogers, J.A., Adv. Mater. 21 (1), 29 (2009).CrossRefGoogle Scholar
Asada, Y., Nihey, F., Ohmori, S., Adv. Mater. 23, 1 (2011).CrossRefGoogle Scholar
Avouris, P., Phys. Today 62 (1), 34 (2009).CrossRefGoogle Scholar
Smith, R.F., Rueckes, T., Konsek, S., Ward, J.W., Brock, D.K., Segal, B.M., “Carbon nanotube based memory development and testing,” paper presented at the 2007 IEEE Aerospace Conference, Big Sky, MT, 3–10 March 2007.CrossRefGoogle Scholar
Choi, W., Lahiri, I., Seelaboyina, R., Kang, Y.S., Crit. Rev. Solid State Mater. Sci. 35 (1), 52 (2010).CrossRefGoogle Scholar
Hecht, D.S., Thomas, D., Hu, L., Ladous, C., Lam, T., Park, Y., Irvin, G., Drzaic, P., Carbon 17, 941 (2009).Google Scholar
Feng, C., Liu, K., Wu, J.-S., Liu, L., Cheng, J.-S., Zhang, Y.Y., Sun, Y.H., Li, Q.Q., Fan, S.S., Jiang, K.L., Adv. Funct. Mater. 20 (6), 885 (2010).CrossRefGoogle Scholar
Jeong, M.-H., Choi, K.W., Lim, C., Lee, S.-B., paper presented at the Third International Nanoelectronics Conference (INEC), Hong Kong, China, 3–8 January 2010.Google Scholar
Transparent Conductive Films, www.unidym.com/products/transparent.html (accessed October 2012).Google Scholar
Wu, Z., Chen, Z., Du, X., Logan, J.M., Sippel, J., Nikolou, M., Kamaras, K., Reynolds, J.R., Tanner, D.B., Hebard, A.F., Rinzler, A.G., Science 305 (5688), 1273 (2004).CrossRefGoogle Scholar
Trottier, C.M., Glatkowski, P., Wallis, P., Luo, J., J. Soc. Inf. Disp. 13, 759 (2005).CrossRefGoogle Scholar
Park, Y.-B., Hu, L., Gruner, G., Irvin, G., Drzaic, P., Dig. Tech. Pap.—Soc. Inf. Disp. Int. Symp. 537 (2008).CrossRefGoogle Scholar
Geng, H.-Z., Kim, K.K., So, K.P., Lee, Y.S., Chang, Y., Lee, Y.H., J. Am. Chem. Soc. 129, 7758 (2007).CrossRefGoogle Scholar
Arthur, D.J., Hurley, W., “New Applications for Conductive Carbon Nanotube Inks Now PossiblePCI Mag. Digital Ed. (January 2011).Google Scholar
SWeNT® V Series1 Conductive Inks Datasheet, www.swentnano.com/tech/docs/VC100_Data_Sheet.pdf (accessed October 2012).Google Scholar
Wassei, J.K., Kaner, R.B., Mater. Today 13 (3), 52 (2010).CrossRefGoogle Scholar
Jiao, L., Zhang, L., Wang, X., Diankov, G., Dai, H., Nature 458 (7240), 877 (2009).CrossRefGoogle Scholar