Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-26T16:15:43.312Z Has data issue: false hasContentIssue false

Captured Molecules in Coordination Frameworks

Published online by Cambridge University Press:  31 January 2011

Get access

Extract

In recent years, a new class of porous materials based on a combination of organic components and metal centers has emerged, namely, microporous coordination polymers (MCPs), in which the chemical properties as well as the pore dimensions affect the incorporation of “guest” molecules within the pores. In this article, we describe the ability of MCPs to store gas molecules, which is ascribed to framework regularity and high porosity, and the unique capacity of certain MCPs to capture molecules selectively by well-defined interactions with organic functional groups.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Hill, R.J., Long, D.L., Champness, N.R., Hubberstey, P., Schröder, M., Acc. Chem. Res. 38, 335 (2005).CrossRefGoogle Scholar
2.Langley, P.J., Hulliger, J., Chem. Soc. Rev. 28, 279 (1999).CrossRefGoogle Scholar
3.Moulton, B., Zaworotko, M.J., Chem. Rev. 101, 1629 (2001).CrossRefGoogle Scholar
4.Mueller, U., Schubert, M., Teich, F., Puetter, H., Schierle-Arndt, K., Pastre, J., J. Mater. Chem. 16, 626 (2006).CrossRefGoogle Scholar
5.Papaefstathiou, G.S., MacGillivray, L.R., Coord. Chem. Rev. 246, 169 (2003).CrossRefGoogle Scholar
6.Rosseinsky, M.J., Microporous Mesoporous Mater. 73, 15 (2004).CrossRefGoogle Scholar
7.Yaghi, O.M., O'Keeffe, M., Ockwig, N.W., Chae, H.K., Eddaoudi, M., Kim, J., Nature 423, 705 (2003).CrossRefGoogle Scholar
8.Kitagawa, S., Kitaura, R., Noro, S., Angew. Chem. Int. Ed. 43, 2334 (2004).CrossRefGoogle Scholar
9.Chae, H.K., Siberio-Pérez, D.Y., Kim, J., Go, Y., Eddaoudi, M., Matzger, A.J., O'Keeffe, M., Yaghi, O.M., Nature 427, 523 (2004).CrossRefGoogle Scholar
10.Férey, G., Mellot-Draznieks, C., Serre, C., Millange, F., Dutour, J., Surble, S., Margiolaki, I., Science 309, 2040 (2005).CrossRefGoogle Scholar
11.Férey, G., Mellot-Draznieks, C., Serre, C., Millange, F., Acc. Chem. Res. 38, 217 (2005).CrossRefGoogle Scholar
12.Rowsell, J.L., Yaghi, O.M., Angew. Chem. Int. Ed. 44, 4670 (2005).CrossRefGoogle Scholar
13.Kitagawa, S., Noro, S., Nakamura, T., Chem. Commun. 7, 701 (2006).CrossRefGoogle Scholar
14.Kondo, M., Yoshitomi, T., Seki, K., Matsuzaka, H., Kitagawa, S., Angew. Chem. Int. Ed. 36, 1725 (1997).CrossRefGoogle Scholar
15.Noro, S., Kitagawa, S., Kondo, M., Seki, K., Angew. Chem. Int. Ed. 39, 2081 (2000).3.0.CO;2-A>CrossRefGoogle Scholar
16.Seki, K., Takamizawa, S., Mori, W., Chem. Lett. 30, 122 (2001).CrossRefGoogle Scholar
17.Seki, K., Mori, W., J. Phys. Chem. B 106, 1380 (2002).CrossRefGoogle Scholar
18.Seki, K., Chem. Commun. 14, 1496 (2001).CrossRefGoogle Scholar
19.Seki, K., Takamizawa, S., Mori, W., Chem. Lett. 30 332 (2001).CrossRefGoogle Scholar
20.Eddaoudi, M., Kim, J., Rosi, N., Vodak, D., Wachter, J., O'Keeffe, M., Yaghi, O.M., Science 295, 469 (2002).CrossRefGoogle Scholar
21.Millward, A.R., Yaghi, O.M., J. Am. Chem. Soc. 127, 17998 (2005).CrossRefGoogle Scholar
22.Kitaura, R., Kitagawa, S., Kubota, Y., Kobayashi, T.C., Kindo, K., Mita, Y., Matsuo, A., Kobayashi, M., Chang, H.C., Ozawa, T.C., Suzuki, M., Sakata, M., Takata, M., Science 298, 2358 (2002).CrossRefGoogle Scholar
23.Kitagawa, S., Nature 441, 584 (2006).CrossRefGoogle Scholar
24.Kachi-Terajima, C., Akatsuka, T., Kohbara, M.A., Takamizawa, S., Chem. Asian J. 2, 40 (2007).CrossRefGoogle Scholar
25.Schlapbach, L., Züttel, A., Nature 414, 353 (2001).CrossRefGoogle Scholar
26.Chen, B.L., Ockwig, N.W., Millward, A.R., Contreras, D.S., Yaghi, O.M., Angew. Chem. Int. Ed. 44, 4745 (2005).CrossRefGoogle Scholar
27.Lin, X., Jia, J., Zhao, X., Thomas, K.M., Blake, A.J., Walker, G.S., Champness, N.R., Hubberstey, P., Schröder, M., Angew. Chem. Int. Ed. 45, 7358 (2006).CrossRefGoogle Scholar
28.Latroche, M., Surblé, S., Serre, C., Mellot-Draznieks, C., Llewellyn, P.L., Lee, J.H., Chang, J. S., Jhung, S.H., Férey, G., Angew. Chem. Int. Ed. 45, 8227 (2006).CrossRefGoogle Scholar
29.Acaron, M. Dincă, Dailly, A., Liu, Y., Brown, C.M., Neumann, D.A., Long, J.R., J. Am. Chem. Soc. 128, 16876 (2006).Google Scholar
30.Matsuda, R., Kitaura, R., Kitagawa, S., Kubota, Y., Belosludov, R.V., Kobayashi, T.C., Sakamoto, H., Chiba, T., Takata, M., Kawazoe, Y., Mita, Y., Nature 436, 238 (2005).CrossRefGoogle Scholar
31.Llewellyn, P.L., Bourrelly, S., Serre, C., Filinchuk, Y., Férey, G., Angew. Chem. Int. Ed. 45, 7751 (2006).CrossRefGoogle Scholar
32.Ma, J.C., Dougherty, D.A., Chem. Rev. 97, 1303 (1997).CrossRefGoogle Scholar
33.Meyer, E.A., Castellano, R.K., Diederich, F., Angew. Chem. Int. Ed. 42, 1210 (2003).CrossRefGoogle Scholar
34.Nishio, M., CrystEngComm 6, 130 (2004).CrossRefGoogle Scholar
35.Yoshizawa, M., Kusukawa, T., Kawano, M., Ohhara, T., Tanaka, I., Kurihara, K., Niimura, N., Fujita, M., J. Am. Chem. Soc. 127, 2798 (2005).CrossRefGoogle Scholar
36.Tanaka, D., Masaoka, S., Horike, S., Furukawa, S., Mizuno, M., Endo, K., Kitagawa, S., Angew. Chem. Int. Ed. 45, 4628 (2006).CrossRefGoogle Scholar