Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-27T08:13:22.676Z Has data issue: false hasContentIssue false

Can We Build a Large-Scale Quantum Computer Using Semiconductor Materials?

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

The following article is based on the Symposium X presentation given by Bruce E. Kane (University of Maryland) at the 2004 Materials Research Society Spring Meeting in San Francisco. Quantum computing has the potential to revolutionize our ability to solve certain classes of difficult problems. A quantum computer is able to manipulate individual two-level quantum states (“qubits”) in the same way that a conventional computer processes binary ones and zeroes. Here, Kane discusses some of the most promising proposals for quantum computing, in which the qubit is associated with single-electron spins in semiconductors. While current research is focused on devices at the one- and two-qubit level, there is hope that cross-fertilization with advancing conventional computer technology will enable the eventual development of a large-scale (thousands of qubits) semiconductor quantum computer.The author focuses on materials issues that will need to be surmounted if large-scale quantum computing is to be realizable. He argues in particular that inherent fluctuations in doped semiconductors will severely limit scaling and that scalable quantum computing in semiconductors may only be possible at the end of the road of Moore's law scaling, when devices are engineered and fabricated at the atomic level.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. For an introduction to the topic, see Nielson, M.A. and Chuang, I.L., Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, UK, 2000).Google Scholar
2.Shor, P.W., in Proc. 35th Annu. Symp. on Foundations of Computer Science (IEEE Computer Society Press, Los Alamitos, CA, 1994) p. 124.Google Scholar
3.Shor, P.W., SIAM J. Comp. 26 (1997) p. 1484.Google Scholar
4.Monroe, C., Meekhof, D.M., King, B.E., Itano, W.M., and Wineland, D., Phys. Rev. Lett. 75 (1995) p. 4714.Google Scholar
5.Kielpinski, D., Monroe, C., and Wineland, D.J., Nature 417 (2002) p. 709.Google Scholar
6.Nakamura, Y., Pashkin, Y.A., and Tsai, J.S., Nature 398 (1999) p. 786.Google Scholar
7.Vion, D., Aassime, A., Cottet, A., Joyez, P., Pothier, H., Urbina, C., Esteve, C., and Devoret, M.H., Science 296 (2002) p. 886.Google Scholar
8.Elzerman, J.M., Hanson, R., Willems van Beveren, L.H., Witkamp, B., Vandersypen, L.M.K., and Kouwenhoven, L.P., Nature 430 (2004) p. 431.Google Scholar
9.Li, X., Wu, Y., Steel, D., Gammon, D., Stievater, T.H., Katzer, D.S., Park, D., Piermarocchi, C., and Sham, L.J., Science 301 (2003) p. 809.Google Scholar
10.Jelezko, F., Gaebel, T., Popa, I., Gruber, A., and Wrachtrup, J., Phys. Rev. Lett. 92 076401(2004).Google Scholar
11.Feher, G. and Gere, E.A., Phys. Rev. 114 (1959) p. 1245.Google Scholar
12.Tyryshkin, A.M., Lyon, S.A., Astashkin, A.V., and Raitsimring, A.M., Phys. Rev. B 68 193207 (2003).Google Scholar
13.Kane, B.E., Nature 393 (1998) p. 133.Google Scholar
14.Vrijen, R., Yablonovitch, E., Wang, K., Jiang, H.W., Balandin, A., Roychowdhury, V., Mor, T., and DiVincenzo, D., Phys. Rev. A 62 012306(2000).Google Scholar
15.Friesen, M., Rugheimer, P., Savage, D.E., Lagally, M.G., Van der Weide, D.W., Joynt, R., and Eriksson, M.A., Phys. Rev. B 67 121301(2003).Google Scholar
16. Even single-qubit operations are unnecessary in certain architectures. See Bacon, D., Kempe, J., Lidar, D.A., and Whaley, K.B., Phys. Rev. Lett. 85 (2000) p. 1758; and D.P. DiVincenzo, D. Bacon, J. Kempe, G. Burkard, and K.B. Whaley, Nature 408 (2000) p. 339.Google Scholar
17.Levy, J., Phys. Rev. A 64 052306(2001).Google Scholar
18.Stoneham, A.M., Fisher, A.J., and Greenland, P.T., J. Phys. Condens. Matter 15 (2003) p. L447.Google Scholar
19.Loss, D. and DiVincenzo, D.P., Phys. Rev. A 57 (1998) p. 120.Google Scholar
20.Burkard, G., Loss, D., and DiVincenzo, D.P., Phys. Rev. B 59 (1999) p. 2070.Google Scholar
21.Ciorga, M., Sachrajda, A.S., Hawrylak, P., Gould, C., Zawadzki, P., Jullian, S., Feng, Y., and Wasilewski, Z., Phys. Rev. B 61 R16315 (2000).Google Scholar
22.Elzerman, J.M., Hanson, R., Greidanus, J.S., Willems van Beveren, L.H., De Franceschi, S., Vandersypen, L.M.K., Tarucha, S., and Kouwenhoven, L.P., Phys. Rev. B 67 161308(2003).Google Scholar
23.Hu, X. and Sarma, S. Das, Phys. Rev. A 61 062301(2000).Google Scholar
24.Mason, N., Biercuk, M.J., and Marcus, C.M., Science 303 (2004) p. 655.Google Scholar
25.Oberbeck, L., Curson, N.J., Simmons, M.Y., Brenner, R., Hamilton, A.R., Schofield, S.R., and Clark, R.G., Appl Phys. Lett. 81 (2002) p. 3197; J.L. O'Brien, S.R. Schofield, M.Y. Simmons, R.G. Clark, A.S. Dzurak, N.J. Curson, B.E. Kane, N.S. McAlpine, M.E. Hawley, and G.W. Brown, Phys. Rev. B 64 161401(2001).Google Scholar
26.Schenkel, T., Persaud, A., Park, S.J., Nilsson, J., Bokor, J., Liddle, J.A., Keller, R., Schneider, D.H., Cheng, D.W., and Humphries, D.E., J. Appl. Phys. 94 (2003) p. 7017.Google Scholar
27.Keyes, R.W., Philos. Mag. B 81 (2001) p. 1315; also R. Keyes, Rev. Mod. Phys. 61 (1989) p. 279.Google Scholar
28. See Steane, A.M., Nature 399 (1999) p. 124 and references therein.Google Scholar
29.Knill, E., Laflamme, R., and Zurek, W.H., Science 279 (1998) p. 342.Google Scholar
30.Isailovic, N., Whitney, M., Patel, Y., Kubiatowicz, J., Copsey, D., Chong, F.T., Chuang, I.L., and Oskin, M., Trans. Architecture Code Optimization 1 (2004) p. 34.Google Scholar
31. See Pfeiffer, L., West, K.W., Stormer, H.L., and Baldwin, K.W., Appl. Phys. Lett. 55 (1989) p. 1888 and references therein.Google Scholar
32.Nixon, J.A., Davies, J.H., and Baranger, H.U., Phys. Rev. B 43 (1991) p. 12638.Google Scholar
33.Kane, B.E., Pfeiffer, L.N., and West, K.W., Appl. Phys. Lett. 67 (1995) p. 1262.Google Scholar
34.Koiller, B., Hu, X., and Sarma, S. Das, Phys. Rev. Lett. 88 027903(2002).Google Scholar
35.Wellard, C.J., Hollenberg, L.C.L., Parisoli, F., Kettle, L.M., Goan, H.-S., McIntosh, J.A.L., and Jamieson, D.N., Phys. Rev. B 68 195209(2003).Google Scholar
36.Koiller, B., Hu, X., and Sarma, S. Das, Phys. Rev. B 66 115201(2002).Google Scholar
37.de Sousa, R., Delgado, J.D., and Sarma, S. Das, “Silicon quantum computation based on magnetic dipolar coupling,” arXiv.org e-print archive, cond-mat/0311403 (accessed December 2004).Google Scholar
38.Skinner, A.J., Davenport, M.E., and Kane, B.E., Phys. Rev. Lett. 90 087901(2003).Google Scholar
39.Xia, J.S., Pan, W., Vincente, C.L., Adams, E.D., Sullivan, N.S., Stormer, H.L., Tsui, D.C., Pfeiffer, L.N., Baldwin, K.W., and West, K.W., “Electron correlation in the second Landau level; a competition between many, nearly degenerate quantum phases,” arXiv.org e-print archive, cond-mat/0406724 (accessed December 2004).Google Scholar
40.Crommie, M.F., Lutz, C.P., and Eigler, D.M., Science 262 (1993) p. 218.Google Scholar
41.Heinrich, A.J., Lutz, C.P., Gupta, J.A., and Eigler, D.M., Science 298 (2002) p. 1381.Google Scholar