Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-24T08:48:43.364Z Has data issue: false hasContentIssue false

Buried Oxide and Silicide Formation by High-Dose Implantation in Silicon

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

Experiments in ion implantation were first performed almost 40 years ago by nuclear physicists. More recently, ion implanters have become permanent fixtures in integrated circuit processing lines. Manufacture of the more complex integrated circuits may involve as many as 10 different ion implantation steps. Implantation is used primarily at f luences of 1012–1015 ions/cm2 to tailor the electrical properties of a semiconductor substrate, but causing only a small perturbation in the composition of the target (see the article by Seidel and Larson in this issue of the MRS Bulletin). Applications of implantation had been limited by the small beam currents that were available, but recently a new generation of high-current implanters has been developed. This high-current capability allows implanting concentrations up to three orders of magnitude higher than those required for doping—enough to create a compound.

Type
Ion-Assisted Processing of Electronic Materials
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Wegmann, L., in Ion Implantation Science and Technology, edited by Ziegler, J.F. (Academic Press, New York, 1984).Google Scholar
2.Izumi, K., Doken, M., and Ariyoshi, H., Electron. Lett. 14 (1978) p. 593.CrossRefGoogle Scholar
3.Hemment, P.L.F., in Semiconductor-on-Insulator and Thin Film Transistor Technology, edited by Chiang, A., Geis, M.W., and Pfeiffer, L. (Mater. Res. Soc. Symp. Proc. 53, Pittsburgh, PA, 1986) p. 207.Google Scholar
4.Watanabe, M. and Tooi, A., Jpn. J. Appl. Phys. 5 (1966) p. 737.CrossRefGoogle Scholar
5.Badawi, M.H. and Anand, K.V., J. Phys. D 10 (1977) p. 1931.Google Scholar
6.Dexter, R.J., Watelski, S.B., and Picreaux, S.T., Appl. Phys. Lett. 23 (1973) p. 455.CrossRefGoogle Scholar
7.Jaussaud, C., Stoemenos, J., Margail, J., Papon, A.M., and Bruel, M., Vacuum 42 (1991) p. 341; K.J. Reeson, A.K. Robinson, P.L. F. Hemment, C.D. Marsh, K.N. Christensen, G.R. Booker, R.J. Chater, J.A. Kilner, G. Harbeke, E.F. Steigmeir, and G.K. Celler, Microelectronic Eng. 8 (1988) p. 163.CrossRefGoogle Scholar
8.Krause, S.J., Chen, B.L., and El-Ghor, M.K., 1991 IEEE Intern. SOI Conf. Proc. (IEEE 1991) p. 114; S.J. Krause, C.O. Jung, T.S. Ravi, S.R. Wilson, and D.E. Burke, in Silicon-on-Insulator and Buried Metals in Semiconductors, edited by J.C Sturm, C.K. Chen, L. Pfeiffer, and P.L.F. Hemment (Mater. Res. Soc. Symp. Proc. 107, Pittsburgh, PA, 1988) p. 93.CrossRefGoogle Scholar
9.Kilner, J.A., Chater, R.J., Hemment, P.L.F., Peart, R.F., Maydell-Ondrusz, E.A., Taylor, M.R., and Arrowsmith, R.P., Nucl. Instr. Methods Phys. Res. B7/8 (1985) p. 293.CrossRefGoogle Scholar
10.Celler, G.K., Hemment, P.L.F., West, K.W., and Gibson, J.M., Appl. Phys. Lett. 48 (1986) p. 532; G.K. Celler, Solid State Technol. 30 (3) (1987) p. 93.CrossRefGoogle Scholar
11.Celler, G.K., Batstone, J.L., West, K.W., Hemment, P.L.F., and Reeson, K.J., Dielectric Layers in Semiconductors: Novel Technologies and Devices, Les editions de physique (Proc. European MRS Conf., Vol. XII, 1986) p. 95.Google Scholar
12.White, A.E., Short, K.T., Batstone, J.L., Jacobson, D.C., Poate, J.M., and West, K.W., Appl. Phys. Lett. 50 (1987) p. 19.CrossRefGoogle Scholar
13.Namavar, F., Cortesi, E., Buchanan, B., and Sioshansi, P., Proc. 1989 SOS/SOI Technol. Conf. (IEEE 1989) p. 117.Google Scholar
14.Celler, G.K., in Semiconductor Silicon 1990, edited by Huff, H.R., Barraclough, K.G., and Chikawa, J. (Electrochem. Soc. Proc., Vol. 90–7, Pennington, NJ, 1990) p. 472.Google Scholar
15.Hill, D., Fraundorf, P., and Fraundorf, G., J. Appl. Phys. 63 (1988) p. 4933.CrossRefGoogle Scholar
16.Ruffell, J.P., Douglas-Hamilton, D.H., Kaim, R.E., and Izumi, K., Nucl. Instrum. Methods B21 (1987) p. 229; D.H. Douglas-Hamilton, J.P. Ruffell, R.E. Kaim, and K. Izumi, Nucl. Instrum. Methods B21 p. 324.CrossRefGoogle Scholar
17.Guerra, M.A., 1991 IEEE Intern. SOI Conf. Proc. (IEEE 1991) p. 154 ; M.A. Guerra, Solid State Technol. 33 (11) (1990) p. 75.Google Scholar
18.Leray, J.L., Microelectronic Engin. 8 (1988) p. 187.CrossRefGoogle Scholar
19.Auberton-Herve, A.J., Giffard, B., and Bruel, M., Proc. 1989 IEEE SOS/SOI Technology Conference (IEEE 1989) p. 169.Google Scholar
20.Colinge, J.P., Microelectronic Engin. 8 (1988) p. 127.CrossRefGoogle Scholar
21.Vasudev, P.K., Terrill, K.W., and Seymour, S., in Silicon-on-Insulator and Buried Metals in Semiconductors, edited by Sturm, J.C., Chen, C.K., Pfeiffer, L., and Hemment, P.L.F. (Mater. Res. Soc. Symp. Proc. 107, Pittsburgh, PA, 1988) p. 349.Google Scholar
22.Kamgar, Avid, Hillenius, S.J., Cong, H-I., Field, R.L., Lindenberger, W.S., Celler, G.K., Trimble, L.E., and Sheng, T.T., IEEE Trans. Electron Devices 39 (1992) p. 640CrossRefGoogle Scholar
23.White, A.E., Short, K.T., Dynes, R.C., Garno, J.P., and Gibson, J.M., Appl. Phys. Lett. 50 (1987) p. 95; K. Kohlhof, S. Mantl, B. Stritzker, and W. Jager, Nucl. Instrum. Methods Phys. Res. B39 (1989) p. 276; A. Vantomme, I. Dezsi, and G. Langouche, Nucl. Instrum. Methods Phys. Res. B39 (1989) 284.CrossRefGoogle Scholar
24.Tung, R.T., Gibson, J.M., and Levi, A.F.J., Appl. Phys. Lett. 48 (1986) p. 1264; B.D. Hunt, J. Lewis, E.L. Hall, L.G. Turner, L.J. Schowalter, M. Okamoto, and S. Hashimoto, in Layered Structures and Epitaxy, edited by J.M. Gibson, G.C. Osbourn, and R.M. Tromp (Mater. Res. Soc. Symp. Proc. 56, Pittsburgh, PA, 1986) p. 151.CrossRefGoogle Scholar
25.Sigmund, P., Phys. Rev. 184 (1969) p. 383; Z.L. Liau, and J.W. Mayer, J. Vac. Sci. Technol. 15 (1978) p. 1629.Google Scholar
26.Sanchez, E.H., Namavar, F., Budnick, J.I., Fasihudin, A., and Hayden, H.C., in Beam-Solid Interactions and Phase Transformations, edited by Kurz, H., Olson, G.L., and Poate, J.M. (Mater. Res. Soc. Symp. Proc. 51, Pittsburgh, PA, 1986) p. 439.Google Scholar
27.van Ommen, A.H., Ottenheim, J.J.M., Theunissen, A.M.L., and Mouwen, A.G., Appl. Phys. Lett. 54 (1988) p. 669; D.K. Brice and J.C. Barbour, Nucl. Instrum. and Methods Phys. Res. B36 (1989) p. 431; K. Radermacher, S. Mantl, K. Kohlhof, and W Jager, J. Appl. Phys. 68 (1990) p. 3001.CrossRefGoogle Scholar
28.van Ommen, A.H., Bulle-Lieuwma, C.W.T., Ottenheim, J.J.M., and Theunissen, A.M.L., J. Appl. Phys. 67 (1990) p. 1767.CrossRefGoogle Scholar
29.Hull, R., White, A.E., Short, K.T., and Bonar, J.M., J. Appl. Phys. 68 (1990) p. 1629.CrossRefGoogle Scholar
30.Loretto, D., Gibson, J.M., and Yalisove, S.M., Phys. Rev. Lett. 63 (1989) p. 276.Google Scholar
31.White, A.E., Short, K.T., Dynes, R.C., Gibson, J.M., and Hull, R., in Fundamentals of Beam-Solid Interactions and Transient Thermal Processing, edited by Aziz, M.J., Rehn, L.E., and Stritzker, B. (Mater. Res. Soc. Symp. Proc. 100, Pittsburgh, PA, 1988) p. 3.Google Scholar
32.White, Alice E., Short, Kenneth T., Hsieh, Yong-Fen, and Hull, Robert, Mater. Sci. Eng. B12 (1992) p. 107.CrossRefGoogle Scholar
33.Jebasinski, R., Mantl, S., Radermacher, K., Fichtner, P., Jager, W., and Buchal, C., in Surface Chemistry and Beam-Solid Interactions, edited by Atwater, H.A., Houle, F.A., and Lowndes, D.H. (Mater. Res. Soc. Symp. Proc. 201, Pittsburgh, PA, 1991) p. 411.Google Scholar
34.Maex, K., Petersson, S., Lauwers, A., Vanhellemont, J., and Jonckheere, R., Mater. Sci. Eng. B12 (1992), in press.Google Scholar
35.Schuppen, A., Mantl, S., Vescan, L., and Luth, H., Proc. ESSDERC, Nottingham, United Kingdom, 1990.Google Scholar
36.White, A.E., Short, K.T., Maex, K., Hull, R., Hsieh, Y-F., Audet, S.A., Goossen, K.W, Jacobson, D.C., and Poate, J.M., Nucl. Instrum. Methods Phys. Res. B59/60 (1991) p. 693.CrossRefGoogle Scholar
37.Roskos, H., Nuss, M.C., Goossen, K.W, Kisker, D.W., White, A.E., Short, K.T., Jacobson, D.C., and Poate, J.M., Appl. Phys. Lett. 58 (1991) p. 2604.Google Scholar
38.Goossen, K.W., Cunningham, J.E., White, A.E., Short, K.T., Jan, W.Y., and Walker, J.A., IEEE Photonics Technol. Lett. 4 (1992) p. 140.CrossRefGoogle Scholar
39.Campisi, G.J., Dietrich, H.B., Delfino, M., and Sadana, B.K., in Thin Films—Interfaces and Phenomena, edited by Nemanich, R.J., Ho, P.S., and Lau, S.S. (Mater. Res. Soc. Symp. Proc. 54, Pittsburgh, PA, 1986) p. 747; A.E. White, K.T. Short, R.C. Dynes, J.P. Garno, and J.M. Gibson, in Materials Modification and Growth Using Ion Beams, edited by U.J. Gibson, A.E. White, and P.P. Pronko (Mater. Res. Soc. Symp. Proc. 93, Pittsburgh, PA, 1987) p. 93.Google Scholar
40.Madakson, P.B., Clark, G.C., Leguoues, F., and Baglin, J.E.E., in Silicon-on-Insulator and Buried Metals in Semiconductors, edited by Sturm, J.C., Chen, C.K., Pfeiffer, L., and Hemment, P.L.F. (Mater. Res. Soc. Symp. Proc. 107, Pittsburgh, PA, 1988) p. 281.Google Scholar
41.Audet, S.A., Rafferty, C.S., White, A.E., Short, K.T., and Hsieh, Y-F., in Rapid Thermal and Integrated Processing, edited by Gelpey, J.C., Green, M.L., Singh, R., and Wortman, J.J. (Mater. Res. Soc. Symp. Proc. 224, Pittsburgh, PA, 1991) p. 109; Y. Omura, H. Inokawa, and K. Izumi, J. Mater. Res. 6 (1991) p. 1238.Google Scholar
42.White, A.E., Short, K.T., and Eaglesham, D.J., Appl. Phys. Lett. 56 (1990) p. 1260.CrossRefGoogle Scholar
43.Radermacher, K., Mantl, S., Dieker, C., Holzbrecher, H., Speier, W., and Luth, H., in Phase Formation and Modification by Beam-Solid Interactions, edited by Was, G.S., Rehn, L.E., and Follstaedt, D.M. (Mater. Res. Soc. Symp. Proc. 235, Pittsburgh, PA, 1992) p. 273.Google Scholar