Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-24T03:28:44.819Z Has data issue: false hasContentIssue false

Blue-Green Light-Emitting Diodes and Violet Laser Diodes

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

Short-wavelength-emitting devices, such as blue laser diodes (LDs) and light-emitting diodes (LEDs), are currently sought for a number of applications, including full-color electroluminescent displays, laser printers, read-write laser sources for high-density information storage on magnetic and optical media, and sources for undersea optical communications. For these purposes, II–VI materials such as ZnSe and SiC, and III–V-nitride semiconductors such as GaN have been investigated intensively for a long time. However it was impossible to obtain high-brightness (over 1 cd) blue LEDs and reliable LDs. Much progress has been achieved recently on green LEDs and LDs using II–VI-based materials. The short lifetimes prevent II–VI-based devices from commercialization at present. The short lifetime of these II-VI-based devices may be caused by the crystal defects at a density of 103/cm2 because one crystal defect would cause the propagation of other defects leading to failure of the devices. Another wide-bandgap material for blue LEDs is SiC. The brightness of SiC blue LEDs is only between 10 mcd and 20 mcd because of the indirect bandgap of this material.

On green LEDs, the external quantum efficiency of conventional, green GaP LEDs is only 0.1% due to the indirect bandgap of this material. The peak wavelength is 555 nm (yellowish green). As another material for green emission devices, AlInGaP has been used. The present performance of green AlInGaP LEDs is an emission wavelength of 570 nm (yellowish green) and maximum external quantum efficiency of 1%.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Xie, W., Grillo, D.C., Gunshor, R.L., Kobayashi, M., Jeong, H., Ding, J., Nurmikko, A.V., Hua, G.C., and Otsuka, N., Appl. Phys. Lett. 60 (1992) p. 1999.CrossRefGoogle Scholar
2.Eason, D.E., Yu, Z., Hughes, W.C., Roland, W.H., Boney, C., Cook, J.W. Jr., Schetzina, J.F., Cantwell, G., and Harasch, W.C., Appl. Phys. Lett. 66 (1995) p. 115.CrossRefGoogle Scholar
3.Edmond, J., Kong, H., and Dmitriev, V., Inst. Phys. Conf. Ser. 137 (1994) p. 515.Google Scholar
4.Pankove, J.I., Miller, E.A., and Berkeyheiser, J.E., RCA Review 32 (1971) p. 283.Google Scholar
5.Okuyama, H. and Ishibashi, A., Microelec. J. 25 (1994) p. 643.CrossRefGoogle Scholar
6.Koga, K. and Yamaguchi, T., Prog. Cryst. Growth Charact. 23 (1991) p. 127.CrossRefGoogle Scholar
7.Craford, M.G., Circuits & Devices (September 1992) p. 24.Google Scholar
8.Sugawara, H., Itaya, K., and Hatakoshi, G., Jpn. J. Appl. Phys. 33 (1994) p. 5784.CrossRefGoogle Scholar
9.Kuramata, A., Horino, K., Domen, K., Shinohara, K., and Tanahashi, T., Appl. Phys. Lett. 67 (1995) p. 2521.CrossRefGoogle Scholar
10.Lin, M.E., Strite, S., Agarwal, A., Salvador, A., Zhou, G.L., Teraguchi, N., Rockett, A., and Morkoç, H., Appl. Phys. Lett. 62 (1993) p. 702.CrossRefGoogle Scholar
11.Amano, H., Kito, M., Hiramatsu, K., and Akasaki, I., Jpn. J. Appl. Phys. 28 (1989) p. L2112.CrossRefGoogle Scholar
12.Nakamura, S., Jpn. J. Appl. Phys. 30 (1991) p. L1705.CrossRefGoogle Scholar
13.Morkoç, H., Strite, S., Gao, G.B., Lin, M.E., Sverdlov, B., and Burns, M., J. Appl. Phys. 76 (1994) p. 1363.CrossRefGoogle Scholar
14.Nakamura, S., Iwasa, N., Senoh, M., and Mukai, T., Jpn. J. Appl. Phys. 31 (1992) p. 1258.CrossRefGoogle Scholar
15.Nakamura, S., Mukai, T., and Senoh, M., Appl Phys. Lett. 64 (1994) p. 1687.CrossRefGoogle Scholar
16.Nakamura, S., Senoh, M., Iwasa, N., and Nagahama, S., Jpn. J. Appl. Phys. 34 (1995) p. L797.CrossRefGoogle Scholar
17.Nakamura, S., Senoh, M., Iwasa, N., Nagahama, S., Yamada, T., and Mukai, T., Jpn. J. Appl. Phys. p. L1332.Google Scholar
18.Chichibu, S., Azuhata, T., Sota, T., and Nakamura, S., presented at 38th Electronic Material Conference, W-10, June 26–28, Santa Barbara, (1996).Google Scholar
19.Amano, H., Asahi, T., and Akasaki, I., Jpn. J. Appl. Phys. 29 (1990) p. L205.CrossRefGoogle Scholar
20.Zubrilov, A.S., Nikolaev, V.I., Tsvetkov, D.V., Dmitriev, V.A., Irvine, K.G., Edmond, J.A., and Carter, C.H., Appl. Phys. Lett. 67 (1995) p. 533.CrossRefGoogle Scholar
21.Khan, M.A., Krishnankutty, S., Skogman, R.A., Kuznia, J.N., and Olson, D.T., Appl. Phys. Lett. 65 (1994) p. 520.CrossRefGoogle Scholar
22.Kim, S.T., Amano, H., and Akasaki, I., Appl. Phys. Lett. 67 (1995) p. 267.CrossRefGoogle Scholar
23.Amano, H., Tanaka, T., Kunii, Y., Kato, K., Kim, S.T., and Akasaki, I., Appl. Phys. Lett. 64 (1994) p. 1377.CrossRefGoogle Scholar
24.Aggarwal, R.L., Maki, P.A., Molnar, R.J., Liau, Z.L., and Melngailis, I., J. Appl. Phys. 79 (1996) p. 2148.CrossRefGoogle Scholar
25.Schmidt, T.J., Yang, X.H., Shan, W., Song, J.J., Salvador, A., Kim, W., Aktas, O., Botchkarev, A., and Morkoç, H., Appl. Phys. Lett. 68 (1996) p. 1820.CrossRefGoogle Scholar
26.Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsushita, T., Kiyoku, H., and Sugimoto, Y., Jpn. J. Appl. Phys. 35 (1996) p. L74.CrossRefGoogle Scholar
27.Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsushita, T., Kiyoku, H., and Sugimoto, Y., Jpn. J. Appl. Phys. 35 (1996) p. L217.CrossRefGoogle Scholar
28.Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsushita, T., Kiyoku, H., and Sugimoto, Y., Appl. Phys. Lett. 68 (1996) p. 2105.CrossRefGoogle Scholar
29.Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsushita, T., Kiyoku, H., and Sugimoto, Y., Appl. Phys. Lett. 68 (1996) p. 3269.CrossRefGoogle Scholar
30.Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsushita, T., Kiyoku, H., and Sugimoto, Y., Appl. Phys. Lett. 69 (1996) p. 1477.CrossRefGoogle Scholar
31.Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsushita, T., Kiyoku, H., and Sugimoto, Y., Appl. Phys. Lett. 69 (1996) p. 3034.CrossRefGoogle Scholar
32.Nakamura, S., Mukai, T., and Senoh, M., J. Appl. Phys. 76 (1994) p. 8189.CrossRefGoogle Scholar
33.Nakamura, S., Microelec. J. 25 (1994) p. 651.CrossRefGoogle Scholar
34.Nakamura, S., Mukai, T., Senoh, M., Nagahama, S., and Iwasa, N., J. Appl. Phys. 74 (1993) p. 3911.CrossRefGoogle Scholar
35.Chichibu, S., Azuhata, T., Sota, T., and Nakamura, S., J. Appl. Phys. 79 (1996) p. 2784.CrossRefGoogle Scholar
36.Nakamura, S., Jpn. J. Appl Phys. 30 (1991) p. 1620.CrossRefGoogle Scholar
37.Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsushita, T., Sugimoto, Y., and Kiyoku, H., Appl. Phys. Lett. 69 (1996) p. 1568.CrossRefGoogle Scholar
38.Narukawa, Y., Kawakami, Y., Funato, M., Fujita, Sz., Fujita, Sg., and Nakamura, S. (unpublished manuscript).Google Scholar
39.Suzuki, M. and Uenoyama, T., Jpn. J. Appl Phys. 35 (1996) p. 1420.CrossRefGoogle Scholar