Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-27T21:52:54.214Z Has data issue: false hasContentIssue false

Bioprinting of three-dimensional culture models and organ-on-a-chip systems

Published online by Cambridge University Press:  10 August 2017

Yan Yan Shery Huang
Affiliation:
Department of Engineering, University of Cambridge, UK; [email protected]
Duo Zhang
Affiliation:
Department of Engineering, University of Cambridge, UK; [email protected]
Ye Liu
Affiliation:
Department of Engineering, University of Cambridge, UK; [email protected]
Get access

Abstract

Multimaterial bioprinting technologies offer promising avenues to create mini-organ models with enhanced tissue heterogeneity and complexity. This article focuses on the application of three-dimensional bioprinting to fabricate organ-on-a-chip systems for in vitro drug testing and screening. We illustrate the capabilities and limitations of a bioprinting approach compared to microfabrication in constructing an organ-on-a-chip device. Further, we propose strategies in multimaterial integration for printing microphysiological tissue models. With these analyses, key challenges and future directions are highlighted.

Type
Research Article
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bhatia, S.N., Ingber, D.E., Nat. Biotechnol. 32, 760 (2014).CrossRefGoogle Scholar
Liu, Y., Gill, E., Huang, Y.Y.S., Future Sci. OA, 3 (2), (2017).CrossRefGoogle Scholar
Sato, T., Vries, R.G., Snippert, H.J., Van de Wetering, M., Barker, N., Stange, D.E., Van Es, J.H., Abo, A., Kujala, P., Peters, P.J., Clevers, H., Nature 459, 262 (2009).CrossRefGoogle Scholar
Huh, D., Leslie, D.C., Matthews, B.D., Fraser, J.P., Jurek, S., Hamilton, G.A., Thorneloe, K.S., McAlexander, M.A., Ingber, D.E., Sci. Transl. Med. 4, 147 (2012).CrossRefGoogle Scholar
Pampaloni, F., Reynaud, E.G., Stelzer, E.H., Nat. Rev. Mol. Cell Biol. 8, 839 (2007).CrossRefGoogle Scholar
Esch, E.W., Bahinski, A., Huh, D., Nat. Rev. Drug Discov. 14, 248 (2015).CrossRefGoogle Scholar
Murphy, S.V., Atala, A., Nat. Biotechnol. 32, 773 (2014).CrossRefGoogle Scholar
Mandrycky, C., Wang, Z., Kim, K., Kim, D.H, D.H.., Biotechnol. Adv. 34, 422 (2016).CrossRefGoogle Scholar
Ozbolat, I.T., Hospodiuk, M., Biomaterials 76, 321 (2016).CrossRefGoogle Scholar
Gudapati, H., Dey, M., Ozbolat, I., Biomaterials 102, 20 (2016).CrossRefGoogle Scholar
Huh, D., Kim, H.J., Fraser, J.P., Shea, D.E., Khan, M., Bahinski, A., Hamilton, G.A., Ingber, D.E., Nat. Protoc. 8, 2135 (2013).CrossRefGoogle Scholar
Agarwal, A., Goss, J.A., Cho, A., McCain, M.L., Parker, K.K., Lab Chip 13, 3599 (2013).CrossRefGoogle Scholar
Jang, K.J., Mehr, A.P., Hamilton, G.A., McPartlin, L.A., Chung, S., Suh, K.Y., Ingber, D.E., Integr. Biol. (Camb.) 5, 1119 (2013).CrossRefGoogle Scholar
Toh, Y.C., Lim, T.C., Tai, D., Xiao, G., van Noort, D., Yu, H., Lab Chip 9, 2026 (2009).CrossRefGoogle Scholar
Jeon, J.S., Bersini, S., Gilardi, M., Dubini, G., Charest, J.L., Moretti, M., Kamm, R.D., Proc. Natl. Acad. Sci. 112, 818 (2015).Google Scholar
Tsai, M., Kita, A., Leach, J., Rounsevell, R., Huang, J.N., Moake, J., Ware, R.E., Fletcher, D.A., Lam, W.A., J. Clin. Invest. 122, 408 (2012).CrossRefGoogle Scholar
Maschmeyer, I., Lorenz, A.K., Schimek, K., Hasenberg, T., Ramme, A.P., Hübner, J., Lindner, M., Drewell, C., Bauer, S., Thomas, A., Sambo, N.S., Lab Chip 15, 2688 (2015).CrossRefGoogle Scholar
Huh, D., Hamilton, G.A., Ingber, D.E., Trends Cell Biol. 21, 745 (2011).CrossRefGoogle Scholar
Sackmann, E.K., Fulton, A.L., Beebe, D.J., Nature 507, 181 (2014).CrossRefGoogle Scholar
Wufuer, M., Lee, G., Hur, W., Jeon, B., Kim, B.J., Choi, T.H., Lee, S., Sci. Rep. 6, 37471 (2016).CrossRefGoogle Scholar
Lee, V., Singh, G., Trasatti, J.P., Bjornsson, C., Xu, X., Tran, T.N., Yoo, S.S., Dai, G., Karande, P., Tissue Eng. Part C Methods 20 (6), 473 (2013).CrossRefGoogle Scholar
Koch, L., Deiwick, A., Schlie, S., Michael, S., Gruene, M., Coger, V., Zychlinski, D., Schambach, A., Reimers, K., Vogt, P.M., Chichkov, B., Biotechnol. Bioeng. 109, 1855 (2012).CrossRefGoogle Scholar
Matsusaki, M., Sakaue, K., Kadowaki, K., Akashi, M., Adv. Healthc. Mater. 2, 534 (2013).CrossRefGoogle Scholar
Ma, X., Qu, X., Zhu, W., Li, Y.S., Yuan, S., Zhang, H., Liu, J., Wang, P., Lai, C.S.E., Zanella, F., Feng, G.S., Proc. Natl. Acad. Sci. 113, 2206 (2016).CrossRefGoogle Scholar
Booth, R., Kim, H., Lab Chip 12, 1784 (2012).CrossRefGoogle Scholar
Lozano, R., Stevens, L., Thompson, B.C., Gilmore, K.J., Gorkin, R., Stewart, E.M., in het Panhuis, M., Romero-Ortega, M., Wallace, G.G., Biomaterials 67, 264 (2015).CrossRefGoogle Scholar
Horváth, L., Umehara, Y., Jud, C., Blank, F., Petri-Fink, A., Rothen-Rutishauser, B., Sci. Rep. 5, 7974 (2015).CrossRefGoogle Scholar
Wang, X., Phan, D.T., Sobrino, A., George, S.C., Hughes, C.C., Lee, A.P., Lab Chip 16, 282 (2016).CrossRefGoogle Scholar
Lee, V.K., Lanzi, A.M., Ngo, H., Yoo, S.S., Vincent, P.A., Dai, G., Cell. Mol. Bioeng. 7, 460 (2014).CrossRefGoogle Scholar
Kolesky, D.B., Homan, K.A., Skylar-Scott, M.A., Lewis, J.A., Proc. Natl. Acad. Sci. 113, 3179 (2016).CrossRefGoogle Scholar
Lind, J.U., Busbee, T.A., Valentine, A.D., Pasqualini, F.S., Yuan, H., Yadid, M., Park, S.J., Kotikian, A., Nesmith, A.P., Campbell, P.H., Vlassak, J.J., Lewis, J.A., Parker, K.K., Nat. Mater. 16, 303 (2016).CrossRefGoogle Scholar
Zheng, F., Fu, F., Cheng, Y., Wang, C., Zhao, Y., Gu, Z., Small 12, 2253 (2016).CrossRefGoogle Scholar
Shin, Y., Han, S., Jeon, J.S., Yamamoto, K., Zervantonakis, I.K., Sudo, R., Kamm, R.D., Chung, S., Nat. Protoc. 7, 1247 (2012).CrossRefGoogle Scholar
Truby, R.L., Lewis, J.A., Nature 540, 371 (2016).CrossRefGoogle Scholar
Miller, J.S., Stevens, K.R., Yang, M.T., Baker, B.M., Nguyen, D.H.T., Cohen, D.M., Toro, E., Chen, A.A., Galie, P.A., Yu, X., Chaturvedi, R., Nat. Mater. 11, 768 (2012).CrossRefGoogle Scholar
Kang, H.W., Lee, S.J., Ko, I.K., Kengla, C., Yoo, J.J., Atala, A., Nat. Biotechnol. 34, 312 (2016).CrossRefGoogle Scholar
Kolesky, D.B., Truby, R.L., Gladman, A., Busbee, T.A., Homan, K.A., Lewis, J.A., Adv. Mater. 26, 3124 (2014).CrossRefGoogle Scholar
Hölzl, K., Lin, S., Tytgat, L., Van Vlierberghe, S., Gu, L., Ovsianikov, A., Biofabrication 8, 32002 (2016).CrossRefGoogle Scholar
Arslan-Yildiz, A., El Assal, R., Chen, P., Guven, S., Inci, F., Demirci, U., Biofabrication 8, 014103 (2016).CrossRefGoogle Scholar
Hinton, T.J., Jallerat, Q., Palchesko, R.N., Park, J.H., Grodzicki, M.S., Shue, H.J., Ramadan, M.H., Hudson, A.R., Feinberg, A.W., Sci. Adv. 1 (9), e1500758 (2015).CrossRefGoogle Scholar
Ahn, S., Lee, H., Kim, G., Carbohydr. Polym. 98, 936 (2013).CrossRefGoogle Scholar
Li, X., Li, Z., Wang, L., Ma, G., Meng, F., Pritchard, R.H., Gill, E.L., Liu, Y., Huang, Y.Y.S., ACS Appl. Mater. Interfaces 8, 32120 (2016).CrossRefGoogle Scholar
Wang, W., Huang, Y., Grujicic, M., Chrisey, D.B., J. Manuf. Sci. Eng. 130, 21012 (2008).CrossRefGoogle Scholar