Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-04T18:13:56.896Z Has data issue: false hasContentIssue false

Biomedical applications of mesoscale magnetic particles

Published online by Cambridge University Press:  13 November 2013

Bettina Kozissnik
Affiliation:
University of Florida, Gainesville, USA; [email protected]
Jon Dobson
Affiliation:
University of Florida, Gainesville, USA; [email protected]
Get access

Abstract

Mesoscale (nanometers to microns) magnetic particles are becoming increasingly important in biomedical applications both in vitro for cell and tissue-based research and in vivo for clinical imaging and therapy. These applications generally rely on the fact that, while the body is relatively transparent to magnetic fields, magnetic particles within the body, or in ex vivo biological samples, will couple strongly to applied external fields. By synthesizing bio-functionalized, biocompatible polymer/magnetic particle composites, this remote coupling provides a mechanism for the precisely targeted actuation of cell signaling pathways, delivery of genes, targeted transmission of thermal energy, generation of tissue matrix, and imaging (via magnetic resonance imaging), among others. This article explores a variety of biomedical applications of mesoscale magnetic particles, some of which are routinely used in the clinic and in biomedical laboratories, with others approaching the realm of science fiction.

Type
Magnetic Nanoparticles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Heilbrunn, L.V., Jahrb. Wiss. Bot. 61, 284 (1922).Google Scholar
Seifritz, W., Br. J. Exp. Biol. 2, 1 (1924).Google Scholar
Crick, F.H.C., Hughes, A.F.W., Exp. Cell Res. 1, 37 (1950).Google Scholar
Miltenyi, S., Muller, W., Weichel, W., Radbruch, A., Cytometry, 11, 231 (1990).CrossRefGoogle Scholar
McCloskey, K.E., Chalmers, J.J., Zborowski, M., Anal. Chem. 75, 6868 (2003).Google Scholar
McCloskey, K.E., Chalmers, J.J., Moore, L., Zborowski, M., Abstr. Pap. Am. Chem. Soc. 221, U123 (2001).Google Scholar
Carroll, M.R., Huffstetler, P.P., Miles, W.C., Goff, J.D., Davis, R.M., Riffle, J.S., House, M.J., Woodward, R.C., St Pierre, T.G., Nanotechnology 22, 325702 (2011).Google Scholar
Pankhurst, Q.A., Connolly, J., Jones, S.K., Dobson, J., J. Phys. D: Appl. Phys. 36, R167 (2003).CrossRefGoogle Scholar
Pothayee, N., Balasubramaniam, S., Pothayee, N., Jain, N., Hu, N., Lin, Y.N.A., Davis, R.M., Sriranganathan, N., Koretsky, A.P., Riffle, J.S., J. Mater. Chem. B 1, 1142 (2013).Google Scholar
Widder, K.J., Senyei, A.E., Scarpelli, G.D.., Proc. Soc. Exp. Biol. Med. 158, 141 (1978).Google Scholar
Kempe, H., Kempe, M., Biomaterials 31, 9499 (2010).Google Scholar
Yellen, B.B., Forbes, Z.G., Halverson, D.S., Fridman, G., Barbee, K.A., Chorny, M., Levy, R., Friedman, G., J. Magn. Magn. Mater. 293, 647 (2005).CrossRefGoogle Scholar
Kyrtatos, P.G., Lehtolainen, P., Junemann-Ramirez, M., Garcia-Prieto, A., Price, A.N., Martin, J.F., Gadian, D.G., Pankhurst, Q.A., Lythgoe, M.F., Jacc-Cardiovasc. Interv. 2, 794 (2009).Google Scholar
Muthana, M., Scott, S.D., Farrow, N., Morrow, F., Murdoch, C., Grubb, S., Brown, N., Dobson, J., Lewis, C.E., Gene Ther. 15, 902 (2008).Google Scholar
Sarwar, A., Nemirovski, A., Shapiro, B., J. Magn. Magn. Mater. 324, 742 (2012).CrossRefGoogle Scholar
Mah, C., Fraites, T.J., Zolotukhin, I., Song, S.H., Flotte, T.R., Dobson, J., Batich, C., Byrne, B.J., Mol. Ther. 6, 106 (2002).Google Scholar
Mah, C.Z., Zolotukhin, I., Fraites, T.J., Dobson, J., Batich, C., Byrne, B.J., Mol. Ther. 1, S239 (2000).Google Scholar
Kamau, S.W., Hassa, P.O., Steitz, B., Petri-Fink, A., Hofmann, H., Hofmann-Amtenbrink, M., von Rechenberg, B., Hottiger, M.O., Nucleic Acids Res. 34 (5), e40 (2006).Google Scholar
Lim, J., Dobson, J., J. Genet. 91, 223 (2012).Google Scholar
McBain, S.C., Griesenbach, U., Xenariou, S., Keramane, A., Batich, C.D., Alton, E.W.F.W., Dobson, J., Nanotechnology 19, 405102 (2008).CrossRefGoogle Scholar
Lim, J., Clements, M.A., Dobson, J., PLoS One 7 (12), e51350 (2012).Google Scholar
Stride, E., Porter, C., Prieto, A.G., Pankhurst, Q., Ultrasound Med. Biol. 35, 861 (2009).Google Scholar
Owen, J., Pankhurst, Q., Stride, E., Int. J. Hyperthermia 28, 362 (2012).Google Scholar
Stride, E.P., Coussios, C.C., P.I. Mech. Eng. H 224, 171 (2010).Google Scholar
Gilchrist, R.K., Medal, R., Shorey, W.D., Hanselman, R.C., Parrott, J.C., Taylor, C.B., Ann. Surg. 146, 596 (1957).Google Scholar
Rosensweig, R.E., J. Magn. Magn. Mater. 252, 370 (2002).Google Scholar
Johannsen, M., Gneveckow, U., Taymoorian, K., Thiesen, B., Waldofner, N., Scholz, R., Jung, K., Jordan, A., Wust, P., Loening, S.A., Int. J. Hyperthermia 23, 315 (2007).Google Scholar
Johannsen, M., Thiesen, B., Gneveckow, U., Taymoorian, K., Waldofner, N., Scholz, R., Deger, S., Jung, K., Loening, S.A., Jordan, A., Prostate 66, 97 (2006).Google Scholar
Maier-Hauff, K., Ulrich, F., Nestler, D., Niehoff, H., Wust, P., Thiesen, B., Orawa, H., Budach, V., Jordan, A., J. Neurooncol. 103, 317 (2011).Google Scholar
Guardia, P., Di Corato, R., Lartigue, L., Wilhelm, C., Espinosa, A., Garcia-Hernandez, M., Gazeau, F., Manna, L., Pellegrino, T., ACS Nano 6, 3080 (2012).Google Scholar
Lee, J.H., Jang, J.T., Choi, J.S., Moon, S.H., Noh, S.H., Kim, J.W., Kim, J.G., Kim, I.S., Park, K.I., Cheon, J., Nat. Nanotechnol. 6, 418 (2011).Google Scholar
Rabin, Y., Int. J. Hyperthermia 18, 194 (2002).Google Scholar
Kozissnik, B., Bohorquez, A.C., Dobson, J., Rinaldi, C., Int. J. Hyperthermia (2013), in press.Google Scholar
Valberg, P.A., Butler, J.P., Biophys. J. 52, 537 (1987).Google Scholar
Wang, N., Butler, J.P., Ingber, D.E., Science 260, 1124 (1993).Google Scholar
Glogauer, M., Ferrier, J., Pflüg. Arch., Eur. J. Physiol. 435, 320 (1998).Google Scholar
Glogauer, M., Ferrier, J., Mcculloch, C.A.G., Am. J. Physiol. Cell Physiol. 269, C1093 (1995).Google Scholar
Cartmell, S.H., Dobson, J., Verschueren, S.B., El Haj, A.J., IEEE Trans. Nanobiosci. 1, 92 (2002).Google Scholar
Dobson, J., Nat. Nanotechnol. 3, 139 (2008).Google Scholar
Hughes, S., McBain, S., Dobson, J., El Haj, A.J., J. R. Soc. Interface 5, 855 (2008).Google Scholar
Kanczler, J.M., Sura, H.S., Magnay, J., Green, D., Oreffo, R.O.C., Dobson, J.P., El Haj, A.J., Tissue Eng. Part A 16, 3241 (2010).Google Scholar
Sura, H.S.G., Zhang, J.R.H., Lees, M.R., Zghoul, N., Wolbank, S., van Griensven, M., Redl, H., El Haj, A.J., Dobson, J., J. Tissue Eng. Regener. Med. (2013), in press.Google Scholar
Mannix, R.J., Kumar, S., Cassiola, F., Montoya-Zavala, M., Feinstein, E., Prentiss, M., Ingber, D.E., Nat. Nanotechnol. 3, 36 (2008).Google Scholar
Cho, M.H., Lee, E.J., Son, M., Lee, J.H., Yoo, D., Kim, J.W., Park, S.W., Shin, J.S., Cheon, J., Nat. Mater. 11, 1038 (2012).Google Scholar