Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-18T11:59:41.145Z Has data issue: false hasContentIssue false

Biocompatible ultrananocrystalline diamond coatings for implantable medical devices

Published online by Cambridge University Press:  15 July 2014

Orlando Auciello
Affiliation:
Materials Science and Engineering and Bioengineering Department, The University of Texas at Dallas, USA; [email protected]
Pablo Gurman
Affiliation:
The University of Texas at Dallas and the Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, USA; [email protected]
Maria B. Guglielmotti
Affiliation:
Oral Pathology Department, School of Dentistry, University of Buenos Aires, Argentina; [email protected]
Daniel G. Olmedo
Affiliation:
Oral Pathology Department, School of Dentistry, University of Buenos Aires, Argentina; [email protected]
Alejandro Berra
Affiliation:
University of Buenos Aires, Argentina; [email protected]
Mario J. Saravia
Affiliation:
Department of Ophthalmology, Hospital Universitario Austral, Argentina; [email protected]
Get access

Abstract

A novel multifunctional and biocompatible ultrananocrystalline diamond (UNCD) film technology developed recently represents a new material with a unique combination of functionalities, including biocompatibility, to enable a new generation of implantable medical devices and scaffolds for tissue engineering. Following a description of the synthesis and properties of UNCD films and a comparison with other diamond film technologies, this article focuses on descriptions of key UNCD-based medical devices to treat specific medical conditions requiring effective therapies: (1) A UNCD-coated microchip (artificial retina) implantable inside the eye on the retina to restore partial vision to people blinded by retinitis pigmentosa and macular degeneration produced by genetically induced degeneration of the retina photoreceptors. (2) A UNCD-coated intraocular device for treatment of glaucoma in the eye. (3) UNCD-coated metal dental implants with potential order of magnitude longer life and superior performance than current implants.

Type
Research Article
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Auciello, O., Sumant, A.V., Diam. Relat. Mater. 19, 699 (2010).Google Scholar
Butler, J.E., Sumant, A.V., Chem. Vap. Depos. 14 (7–8), 145 (2008).CrossRefGoogle Scholar
Rotter, S., in Proc. Conf. Applied Diamond Conference/Frontier Carbon Technologies-ADC/FCT ’99, Yoshikawa, M., Koga, Y., Tzeng, Y., Klages, C.P., Miyoshi, K., Eds. (MYU, K.K, Tokyo, 1999), p. 25.Google Scholar
Naguib, N., Birrell, J., Elam, J., Carlisle, J.A., Auciello, O., US Patent 7,128,889 (2006).Google Scholar
Sternberg, M., Zapol, P., Curtiss, L.A., Phys. Rev. B 68, 205330 (2003).Google Scholar
May, P.P.W., Allan, N.L., Ashfold, M.N.R., Richley, J.C., Mankelevich, Y.A., J. Phys. Condens. Matter 21, 364203 (2009).CrossRefGoogle Scholar
Xiao, X., Birrell, J., Gerbi, J.E., Auciello, O., Carlisle, J.A., J. Appl. Phys. 96, 2232 (2004).Google Scholar
Sumant, A.V., Auciello, O., Carpick, R.W., Srinivasan, S., Butler, J.E., MRS Bull. 35, 1 (2010).Google Scholar
Xiao, X., Wang, J., Carlisle, J.A., Mech, B., Greenberg, R., Freda, R., Humayun, M.S., Weiland, J., Auciello, O., J. Biomed. Mater. 77B (2), 273 (2006).Google Scholar
Stoner, B.R., Ma, G.-H., Wolter, S.D., Glass, J.T., Phys. Rev. B 45, 11067 (1992).Google Scholar
Lee, Y.C., Lin, S.J., Chia, C.T., Cheng, H.F., Lin, I.N., Diam. Relat. Mater. 14, 296 (2005).Google Scholar
Chen, Y.C., Zhong, X.Y., Konicek, A.R., Grierson, D.S., Tai, N.H., Lin, I.N., Kabius, B., Hiller, J.M., Sumant, A.V., Carpick, R.W., Auciello, O., Appl. Phys. Lett. 92, 133113 (2008).Google Scholar
Garrett, D.J., Ganesan, K., Stacey, A., Fox, K., Meffin, H., Prawer, S., J. Neural Eng. 9, 016002 (2012).Google Scholar
Zhanga, J., Zimmer, J.W., Howe, R.T., Maboudian, R., Diam. Relat. Mater. 17 (1), 23 (2008).CrossRefGoogle Scholar
Shi, B., Jin, Q., Chen, L., Auciello, O., Diam. Relat. Mater. 18 (2–3), 596 (2009).Google Scholar
House, W.F., Ann. Otol. Rhinol. Laryngol. 85 (Suppl. 27), Pt 2 1 (1976).CrossRefGoogle Scholar
Weiland, J.D., Liu, W., Humayun, M.S., Annu. Rev. Biomed. Eng. 7, 361 (2005).Google Scholar
Lane, S.S., Kuppermann, B.D., Curr. Opin. Ophthalmol. 17 (1), 94 (2006).Google Scholar
Zrenner, E., Bartz-Schmidt, K.U., Benav, H., Besch, D., Bruckmann, A., Gabel, V.P., Gekeler, F., Greppmaier, U., Harscher, A., Kibbel, S., Koch, J., Kusnyerik, A., Peters, T., Stingl, K., Sachs, H., Stett, A., Szurman, P., Wilhelm, B., Wilke, R., Proc. R. Soc. London, Ser. B (2010), doi: 10.1098/rspb 1747.Google Scholar
Loudin, D., Simanovskii, D.M., Vijayraghavan, K., Sramek, C.K., Butterwick, A.F., Huie, P., McLean, G.Y., Palanker, D.V., J. Neural Eng. 4 (1), S72 (2007).Google Scholar
Ings, S., The Eye: A Natural History (Bloomsbury, London, 2007), p. 276.Google Scholar
Rush, A., Troyk, P.R., IEEE Trans. Biomed. Eng. 59 (11), 3255 (2012).Google Scholar
Bionic Vision Australia, Annual Report (2013); http://bionicvision.org.au/about/.Google Scholar
Doyle, P., Troyk, P.R., Kelly, S.K., Shire, D.B., Wyatt, J.L., Rizzo, J.F., Invest. Ophthalmol. Vis. Sci. 51, 3032 (2010).Google Scholar
Humayun, M.S., Dorn, J.D., da Cruz, L., Dagnelie, G., Sahel, J.A., Stanga, P.E., Cideciyan, A.V., Dancan, J.L., Eliott, D., Filley, E., Ho, A.C., Santos, A., Safran, A.B., Arditi, A., Del Priore, L.V., Greenberg, R.J., Argus II Study Group, Ophthalmology 119 (4), 779 (2012).Google Scholar
Hammerle, H., Kobuch, K., Kohler, K., Nisch, W., Sachs, H., Stelzle, M., Biomaterials 23, 797 (2002).Google Scholar
Meyer, J., Sens. Actuators, A 97–98, 1 (2001).Google Scholar
Stuart, F., Edell, D., Guzelian, A., Liu, Y., Edell, R., J. Biomed. Mater. Res. A 67, 856 (2003).Google Scholar
Seo, J., Kim, S., Chung, H., Kim, H., Yu, H., Yu, Y., Mater. Sci. Eng. C 24, 185 (2004).Google Scholar
Zhou, D.D., Greenbaum, E., Eds., Implantable Neural Prostheses (Springer, New York, 2010), vols. 12.CrossRefGoogle Scholar
Paolo, B., Matteo, F. Di., Ophthalmic. Res. 50, 197 (2013).Google Scholar
Auciello, O., Gurman, P., Berra, A., Zaravia, M., Zysler, R., in Diamond Based Materials for Biomedical Applications, Narayan, Roger, Ed. (Woodhead, Elsevier, Cambridge, 2013), chap. 6, pp. 151169.Google Scholar
Kenneth Ward, W., J. Diabetes Sci. Technol. 2 (5), 768 (2008).Google Scholar
Lim, K.S., Allan, B.D.S., Loyd, A.W., Muirm, A., Khaw, P.T., Br. J. Ophthalmol. 82, 1083 (1998).Google Scholar
Abdel-Hady Gepreel, M., Niinomi, M., J. Mech. Behav. Biomed. Mater. 20, 407 (2013).Google Scholar
Omar, A.P., Omar, M., Esposito, M., Lausmaa, J., Thomsen, P., J. R. Soc. Interface 7, S515 (2010).Google Scholar
Gittens, R.A., Olivares-Navarrete, R., Tannenbaum, R., Boyan, B.D., Schwartz, Z., J. Dent. Res. 90 (12), 1389 (2011).Google Scholar
Olmedo, D.G., Cabrini, R.L., Duffó, G., Guglielmotti, M.B., Int. J. Oral Maxillofac. Surg. 37 (11), 1032 (2008).Google Scholar
Allen, L.A., Ambardekar, V., Devaraj, K.M., Maleszewski, J.J., Wolfel, E.E., N. Engl. J. Med. 370 (6), 559 (2014).Google Scholar
Hacking, S.A., Boyraz, P., Powers, B.M., Sen-Gupta, E., Kucharski, W., J. Neurosci. Methods 211 (2), 237 (2012).Google Scholar
Amaral, M., Gomes, P.S., Lopes, M.A., Santos, J., Silva, R., J. Nanomater. 1, 9 (2008).Google Scholar
Bhattacharyya, S., Auciello, O., Birrell, J., Carlisle, J.A., Curtiss, L.A., Goyette, A.N., Gruen, D.M., Krauss, A.R., Schlueter, J., Sumant, A., Zapol, P., Appl. Phys. Lett. 79 (10), 1441 (2001).Google Scholar