Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-12T21:25:53.976Z Has data issue: false hasContentIssue false

Binary ionic porphyrin self-assembly: Structures, and electronic and light-harvesting properties

Published online by Cambridge University Press:  11 March 2019

Yong Zhong
Affiliation:
Key Laboratory for Special Functional Materials, Ministry of Education, Henan University, China; [email protected]
Jiefei Wang
Affiliation:
International Joint Center for Biomedical Innovation, Henan University, China; [email protected]
Yongming Tian
Affiliation:
Angstrom Thin Film Technologies LLC, USA; [email protected]
Get access

Abstract

Porphyrins are a class of conjugated molecules that structurally and functionally resemble natural photosynthetic and enzymatic chromophores. Crystalline solids self-assembled from anionic and cationic porphyrins yield a new class of multifunctional optoelectronic micro- and nanomaterials. In this article, we provide details on the concept of binary ionic self-assembly (ISA) and ionized forms of porphyrins, as well as formation of hierarchical structures, including nanotubes, rods and ribbons, sheets, and three-dimensional clover-like shapes, spheres, and sheaf-like structures. We summarize key physical properties from ultraviolet–visible characterizations of J-aggregate, exciton delocalization and extended π–π stacking, and related electronic and light-harvesting properties of the structures. Depending on the molecular subunits, the functionalities of the ISA materials are altered. These ISA nanostructures possess attractive light-harvesting and charge- and energy-transport functionalities and allow access to a novel class of nanomaterials with potential for applications in sensors, photovoltaics, photocatalysis, and solar power.

Type
Self-Assembled Porphyrin and Macrocycle Derivatives
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Drain, C.M., Varotto, A., Radivojevic, I., Chem. Rev. 109, 1630 (2009).Google Scholar
Chen, Y., Li, A., Huang, Z., Wang, L., Kang, F., Nanomaterials 6, 51 (2016).Google Scholar
Shevchenko, E., Talapin, D., Kotov, N., O’Brien, S., Murray, C., Nature 439, 55 (2006).Google Scholar
Zhang, C., Chen, P., Dong, H., Zhen, Y., Liu, M., Hu, W., Adv. Mater. 27, 5379 (2015).Google Scholar
Ju, H., Zhang, X., Wang, J., in NanoBiosensing Principles, Development and Application, Ju, H., Zhang, X., Wang, J., Eds. (Springer, New York, 2011), pp. 111146.Google Scholar
Hasobe, T., Sakai, H., in Chemical Science of π-Electron Systems, Akasaka, T., Osuka, A., Fukuzumi, S., Kandori, H., Aso, Y., Eds. (Springer, Tokyo, 2015), pp. 475491.CrossRefGoogle Scholar
Wang, Z., Li, Z., Medforth, C.J., Shelnutt, J.A.. J. Am. Chem. Soc. 129, 2440 (2007).Google Scholar
Hiroto, S., Miyake, Y., Shinokubo, H., Chem. Rev. 117, 2910 (2017).Google Scholar
Wang, J., Zhong, Y., Wang, X., Yang, W., Bai, F., Zhang, B., Alarid, L., Bian, K., Fan, H., Nano Lett . 17, 6916 (2017).Google Scholar
Wang, J., Zhong, Y., Wang, L., Zhang, N., Cao, R., Bian, K., Alarid, L., Haddad, R.E., Bai, F., Fan, H., Nano Lett . 16, 6523 (2016).Google Scholar
Zhong, Y., Wang, J., Zhang, R., Wei, W., Wang, H., , X., Bai, F., Wu, H., Haddad, R., Fan, H., Nano Lett . 14, 7175 (2014).Google Scholar
Marek, P.L., in Biomimetic Dye Aggregate Solar Cells, Marek, P.L., Ed. (Springer International, New York, 2013), pp. 2790.CrossRefGoogle Scholar
Pichon, A., Nat. Chem. 2, 611 (2010).Google Scholar
De, L.G., Romeo, A., Villari, V., Micali, N., Foltran, I., Foresti, E., Lesci, I.G., Roveri, N., Zuccheri, T., Scolaro, L.M., J. Am. Chem. Soc. 131, 6920 (2009).Google Scholar
Hipps, K.W., Mazur, U., Eskelsen, J.R., Adinehnia, M., in Handbook of Porphyrin Science, Hipps, K.W., Mazur, U., Eskelsen, J.R., Adinehnia, M., Eds. (World Scientific, Singapore, 2016), pp. 69103.Google Scholar
Wang, Z., Ho, K., Medforth, C., Shelnutt, J., Adv. Mater. 18, 2557 (2006).Google Scholar
Wang, Z., Medforth, C., Shelnutt, J., J. Am. Chem. Soc. 126, 15954 (2004).Google Scholar
Martin, K., Wang, Z., Busani, T., Garcia, R., Chen, Z., Jiang, Y., Song, Y., Jacobsen, J., Vu, T., Schore, N., Swartzentruber, B., Medforth, C., Shelnutt, J., J. Am. Chem. Soc. 132, 8194 (2010).Google Scholar
Wang, Z., Lybarger, L., Wang, W., Medforth, C., Miller, J., Shelnutt, J., Nanotechnology 19, 395604 (2008).Google Scholar
Tian, Y., Beavers, C., Busani, T., Martin, K., Jacobsen, J., Mercado, B., Swartzentruber, B., van Swol, F., Medforth, C., Shelnutt, J., Nanoscale 4, 1695 (2012).Google Scholar
Shelnutt, J., Tian, Y., Martin, K., Medforth, C., in Handbook of Porphyrin Science, Shelnutt, J., Tian, Y., Martin, K., Medforth, C., Eds. (World Scientific, Singapore, 2013), pp. 227277.Google Scholar
Shelnutt, J., Medforth, C., in Organic Nanomaterials: Synthesis, Characterization, and Device Applications, Torres, T., Bottari, G., Eds. (Wiley, Hoboken, NJ, 2013), pp. 103130.CrossRefGoogle Scholar
Wang, Z., Medforth, C., Shelnutt, J., J. Am. Chem. Soc. 126, 16720 (2004).Google Scholar
Medforth, C., Wang, Z., Martin, K., Song, Y., Jacobsen, J., Shelnutt, J., Chem. Commun. 47, 7261 (2009).Google Scholar
Tian, Y., Martin, K., Shelnutt, J., Evans, L., Busani, T., Miller, J., Medforth, C., Shelnutt, J., Chem. Commun. 47, 6069 (2011).Google Scholar
Medforth, C.J., van Swol, F.B., in Office of Scientific & Technical Information Technical Reports (Sandia National Laboratories, Albuquerque, NM, 2010), pp. 410.Google Scholar