Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-24T07:38:40.361Z Has data issue: false hasContentIssue false

Atomistic Simulations of Mechanics of Nanostructures

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

Nanostructures can be in the form of nanoparticles or nanograins, nanowires or nanotubes, and nanoplates or multilayers. These nanostructures may be used individually or embedded in a bulk material. In both cases, they share two common features. First, the small dimensions minimize or even eliminate the presence of defects. Second, nanostructures entail large surface or interface areas. The absence of defects makes nanostructure materials stronger than their bulk counterparts, leading to the eventual realization of ideal strength. The presence of surfaces and interfaces may either reduce or increase the strength. Atomistic simulations can provide insight into the deformation mechanism at the atomic and electronic level, something that is very difficult to obtain from experiments. This article describes generic features of nanostructures and summarizes the five areas presented in the articles in this issue.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Gleiter, H., Acta Mater. 48, 1 (2000).CrossRefGoogle Scholar
2Zhang, L.X., Huang, H.C., Appl. Phys. Lett. 89, 183111 (2006).Google Scholar
3Zhou, L.G., Huang, H.C., Appl. Phys. Lett. 84, 1940 (2004).CrossRefGoogle Scholar
4Zhang, Y.F., Huang, H.C., Nanoscale Res. Lett. 4, 34 (2009).Google Scholar
5Zhang, L.X., Huang, H.C., Appl. Phys. Lett. 90, 23115 (2007).Google Scholar
6Freeman, C.L., Claeyssens, F., Allan, N.L., and Harding, J.H., Phys. Rev. Lett. 96, 066102 (2006).Google Scholar
7Chung, P.W., Phys. Rev. B 73, 75433 (2006).CrossRefGoogle Scholar
8Van Swygenhoven, H., Derlet, P.M., Froseth, A.G., Nat. Mater. 3, 399 (2004).CrossRefGoogle Scholar
9Brandl, C., Derlet, P.M., Van Swygenhoven, H., Phys. Rev. B 76, 054124 (2007).CrossRefGoogle Scholar
10Frøseth, A.G., Van Swygenhoven, H., Derlet, P.M., Acta Mater. 52, 2259 (2004).Google Scholar
11Van Swygenhoven, H., Weertman, J.R., Mater. Today 9, 24 (2006).CrossRefGoogle Scholar
12Dresselhaus, M.S., Dai, H., Eds., MRS Bull. 29 (4) (2004).Google Scholar
13Vinci, R.P., Baker, S.P., Eds., MRS Bull. 27 (1) (2002).Google Scholar
14Kung, H., Foecke, T., Eds., MRS Bull. 24 (2) (1999).Google Scholar
15Ghoniem, N.M., Tong, S.H., Sun, L.Z., Phys. Rev. B 61, 913 (2000).Google Scholar
16Rhee, M., Zbib, H.M., Hirth, J.P., Huang, H., de la Rubia, T., Modell. Simul. Mater. Sci. Eng. 6, 467 (1998).Google Scholar
17Devincre, B., Hoc, T., Kubin, L., Science 320, 1745 (2008).Google Scholar
18Chong, K.P., J. Phys. Chem. Solids 65, 1501 (2004).Google Scholar