Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-12T23:13:59.829Z Has data issue: false hasContentIssue false

Atomistic Aspects of Brittle Fracture

Published online by Cambridge University Press:  31 January 2011

Get access

Extract

The mechanical properties of materials are ultimately determined by events occurring on the atomic scale. In the case of brittle fracture, this connection is obvious, since the crack in a perfectly brittle material must be atomically sharp at its tip. The crack moves by breaking individual bonds between atoms and can therefore be regarded as a macroscopic probe for the atomic bonding. Nevertheless, traditional analysis of brittle-fracture processes resorts to the treatment of Griffith,1 which implies thermodynamic equilibrium. The Griffith criterion for the mechanical stability of a crack can be formulated as a balance of the crack driving force, the energyrelease rate G, and the surface energy ɣs of the two freshly exposed fracture surfaces: G = 2ɣs. The crack driving force can be obtained from elasticity theory. Within linear elasticity, the crack is characterized by a singularity in the stress field that decays as the inverse square root of the distance R from the crack. The strength of the singularity is characterized by the stressintensity factor K, the square of which directly gives access to the energy-release rate (G = K2/E′, where E′ is an appropriate elastic modulus). While this linear elastic description of the material is not disputed for brittle materials, except for a few atomic bonds around the crack, the assumption that the resistance of the material to crack propagation will only be characterized by the surface energy of the fracture surfaces is certainly worth some further consideration. Such considerations should range from examining atomic details at the tip of a single brittle crack to the relevance of more complex fracture events involving additional irreversible processes and complex crack geometries.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Griffith, A.A., Philos. Trans. R. Soc. London, Ser. A 221 (1921) p. 163.Google Scholar
2.Thomson, R., in Solid State Physics, edited by Ehrenreich, H. and Turnbull, D. (Academic Press, New York, 1986) p. 1.Google Scholar
3.Thomson, R., Hsieh, C., and Rana, V., J. Appl. Phys. 42 (8) (1971) p. 3154.CrossRefGoogle Scholar
4.Fuller, E.R. and Thomson, R., in Proc. Fourth Int. Conf. on Fracture, Vol. 3, edited by Taplin, D.M.R. (Pergamon Press, Oxford, UK, 1978) p. 387.Google Scholar
5.Sinclair, J.E., Philos. Mag. 31 (1975) p. 647.CrossRefGoogle Scholar
6.Curtin, W.A., J. Mater. Res. 5 (1990) p. 1549.CrossRefGoogle Scholar
7.Gumbsch, P., Z. Metallkd. 87 (1996) p. 341.Google Scholar
8.Schoeck, G. and Pichl, W., Phys. Status Solidi A 118 (1990) p. 109.CrossRefGoogle Scholar
9.Michot, G., Cryst. Prop. Prep. 17 (1988) p. 55.Google Scholar
10.George, A. and Michot, G., Mater. Sci. Eng., A 164 (1993) p. 118.CrossRefGoogle Scholar
11.Riedle, J., Gumbsch, P., and Fischmeister, H.F., Phys. Rev. Lett. 76 (1996) p. 3594.CrossRefGoogle Scholar
12.Kohlhoff, S., Gumbsch, P., and Fischmeister, H.F., Philos. Mag. A 64 (4) (1991) p. 851.CrossRefGoogle Scholar
13.Clarke, D., in Semiconductors and Semimetals, Vol. 37, edited by Faber, K.T. (Academic Press, New York, 1992) p. 79.Google Scholar
14.Pérez, R. and Gumbsch, P., to be published.Google Scholar
15.Spence, J.H.C., Huang, Y.M., and Sankey, O., Acta Metall. Mater. 41 (1993) p. 2815.CrossRefGoogle Scholar
16.Ludwig, M. and Gumbsch, P., Acta Mater. 46 (1998) p. 3135.CrossRefGoogle Scholar
17.Tasker, P.W., Adv. Ceram. 10 (1984) p. 176.Google Scholar
18.Rice, J.R., J. Mech. Phys. Solids 26 (1978) p. 61.CrossRefGoogle Scholar
19.Cook, R.F., J. Mater. Res. 1 (1986) p. 852.CrossRefGoogle Scholar
20.Wiederhorn, S.M., J. Am. Ceram. Soc. 52 (1969) p. 485.CrossRefGoogle Scholar
21.Wiederhorn, S.M., Hockey, B.J., and Roberts, D.E., Philos. Mag. 28 (1973) p. 783.CrossRefGoogle Scholar
22.Iwasa, M. and Bradt, R.C., Adv. Ceram. 10 (1984) p. 767.Google Scholar
23.Becher, P.F., J. Am. Ceram. Soc. 59 (1976) p. 59.CrossRefGoogle Scholar
24.Manassidis, I. and Gillan, M.J., J. Am. Ceram. Soc. 77 (1994) p. 335.CrossRefGoogle Scholar
25.Lihrmann, J.M. and Haggerty, J.S., J. Am. Ceram. Soc. 68 (1985) p. 81.CrossRefGoogle Scholar
26.Kubby, J.A. and Boland, J.J., Surf. Sci. Rep. 26 (1996) p. 61.CrossRefGoogle Scholar
27.Lawn, B.R., Fracture of Brittle Solids (Cambridge University Press, Cambridge, UK, 1993).CrossRefGoogle Scholar
28.Michalske, T.A. and Bunker, B.C., J. Am. Ceram. Soc. 70 (1987) p. 780.CrossRefGoogle Scholar
29.Lawn, B.R., Hockey, B.J., and Wiederhorn, S.M., J. Mater. Sci. 15 (1980) p. 1207.CrossRefGoogle Scholar
30.Cannon, R.M., Adv. Ceram. 10 (1984) p. 818.Google Scholar
31.Campbell, G., Dalgleish, B.J., and Evans, A.G., J. Am. Ceram. Soc. 72 (1989) p. 1402.CrossRefGoogle Scholar
32.Gilbert, C.J., Cao, J.J., DeJonghe, L.C., and Ritchie, R.O., J. Am. Ceram. Soc. 80 (1997) p. 2253.CrossRefGoogle Scholar
33.Chen, D. and Ritchie, R.O., to be published.Google Scholar
34.Minford, E.J., Kupp, D.M., and Tressler, R.E., J. Am. Ceram. Soc. 66 (1983) p. 769.CrossRefGoogle Scholar
35.Garofalini, S.H. (private communication).Google Scholar
36.Blonski, S. and Garofalini, S.H., J. Am. Ceram. Soc. 80 (1997) p. 1997.CrossRefGoogle Scholar
37.Wiederhorn, S.M., Johnson, H., Diness, A.M., and Heuer, A.H., J. Am. Ceram. Soc. 57 (1974) p. 336.CrossRefGoogle Scholar
38.Rice, J.R. and Wang, J.-S., Mater. Sci. Eng., A 107 (1989) p. 23.CrossRefGoogle Scholar
39.Tasker, P.W. and Duffy, D.M., Philos. Mag. A 47 (1983) p. L45.CrossRefGoogle Scholar
40.Handwerker, C.A., Dynys, J.M., Cannon, R.M., and Coble, R.L., J. Am. Ceram. Soc. 73 (1990) p. 1371.CrossRefGoogle Scholar