Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-24T03:59:32.907Z Has data issue: false hasContentIssue false

Artificial intelligence for materials discovery

Published online by Cambridge University Press:  12 July 2019

Carla P. Gomes
Affiliation:
Department of Computer Science, Cornell University, USA; [email protected]
Bart Selman
Affiliation:
Department of Computer Science, Cornell University, USA; [email protected]
John M. Gregoire
Affiliation:
Joint Center for Artificial Photosynthesis, California Institute of Technology, USA; [email protected]
Get access

Abstract

Continued progress in artificial intelligence (AI) and associated demonstrations of superhuman performance have raised the expectation that AI can revolutionize scientific discovery in general and materials science specifically. We illustrate the success of machine learning (ML) algorithms in tasks ranging from machine vision to game playing and describe how existing algorithms can also be impactful in materials science, while noting key limitations for accelerating materials discovery. Issues of data scarcity and the combinatorial nature of materials spaces, which limit application of ML techniques in materials science, can be overcome by exploiting the rich scientific knowledge from physics and chemistry using additional AI techniques such as reasoning, planning, and knowledge representation. The integration of these techniques in materials-intelligent systems will enable AI governance of the scientific method and autonomous scientific discovery.

Type
The Machine Learning Revolution in Materials Research
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Campbell, M., Hoane, A.J., Hsu, F., Artif. Intell. 134, 57 (2002).10.1016/S0004-3702(01)00129-1CrossRefGoogle Scholar
Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Graepel, T., Lillicrap, T., Simonyan, K., Hassabis, D., Science 362, 1140 (2018).10.1126/science.aar6404CrossRefGoogle Scholar
Ferrucci, D., Brown, E., Chu-Carroll, J., Fan, J., Gondek, D., Kalyanpur, A., Lally, A., Murdock, W., Nyberg, E., Prager, J., Schlaefer, N., Welty, C., AI Mag . 31, 59 (2010).10.1609/aimag.v31i3.2303CrossRefGoogle Scholar
Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., van den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman, S., Grewe, D., Nham, J., Kalchbrenner, N., Sutskever, I., Lillicrap, T., Leach, M., Kavukcuoglu, K., Graepel, T., Hassabis, D., Nature 529, 484 (2016).10.1038/nature16961CrossRefGoogle Scholar
Bohannon, J., Science 357, 16 (2017).10.1126/science.357.6346.18CrossRefGoogle Scholar
Gil, Y., Greaves, M., Hendler, J., Hirsh, H., Science 346, 171 (2014).10.1126/science.1259439CrossRefGoogle Scholar
De Luna, P., Wei, J., Bengio, Y., Aspuru-Guzik, A., Sargent, E., Nature 552, 23 (2017).10.1038/d41586-017-07820-6CrossRefGoogle Scholar
Ramprasad, R., Batra, R., Pilania, G., Mannodi-Kanakkithodi, A., Kim, C., npj. Comput. Mater. 3, 54 (2017).CrossRefGoogle Scholar
Nikolaev, P., Hooper, D., Webber, F., Rao, R., Decker, K., Krein, M., Poleski, J., Barto, R., Maruyama, B., npj. Comput. Mater. 2, 16031 (2016).CrossRefGoogle Scholar
Smalley, E., Nat. Biotechnol. 35, 604 (2017).CrossRefGoogle Scholar
Horvitz, E., Zilberstein, S., Artif. Intell. 126, 1 (2001).10.1016/S0004-3702(01)00051-0CrossRefGoogle Scholar
King, R.D., Whelan, K.E., Jones, F.M., Reiser, P.G.K., Bryant, C.H., Muggleton, S.H., Kell, D.B., Oliver, S.G., Nature 427, 247 (2004).10.1038/nature02236CrossRefGoogle Scholar
Kitchin, J.R., Nat. Catal. 1, 230 (2018).CrossRefGoogle Scholar
Kahneman, D., Thinking, Fast and Slow (Farrar, Straus, and Giroux, New York, 2011).Google Scholar
Krizhevsky, A., Sutskever, I., Hinton, G.E., “ImageNet Classification with Deep Convolutional Neural Networks,” Adv. Neural Inf. Process. Syst. 25, Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q., Eds. (ACM Publications, New York, 2012), pp. 10971105, http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf (accessed April 22, 2019).Google Scholar
Lee, D.D., Seung, H.S., Nature 401, 788 (1999).10.1038/44565CrossRefGoogle Scholar
Jain, A., Ong, S.P., Hautier, G., Chen, W., Richards, W.D., Dacek, S., Cholia, S., Gunter, D., Skinner, D., Ceder, G., Persson, K.A., APL Mater . 1, 011002 (2013).10.1063/1.4812323CrossRefGoogle Scholar
Kirklin, S., Saal, J.E., Meredig, B., Thompson, A., Doak, J.W., Aykol, M., Rühl, S., Wolverton, C., npj Comput. Mater. 1, 15010 (2015).CrossRefGoogle Scholar
Curtarolo, S., Setyawan, W., Wang, S., Xue, J., Yang, K., Taylor, R.H., Nelson, L.J., Hart, G.L.W., Sanvito, S., Buongiorno-Nardelli, M., Mingo, N., Levy, O., Comput. Mater. Sci. 58, 227 (2012).CrossRefGoogle Scholar
Mansouri Tehrani, A., Oliynyk, A.O., Parry, M., Rizvi, Z., Couper, S., Lin, F., Miyagi, L., Sparks, T.D., Brgoch, J., J. Am. Chem. Soc. 140, 9844 (2018).CrossRefGoogle Scholar
DeCost, B.L., Holm, E.A., Comput. Mater. Sci. 110, 126 (2015).CrossRefGoogle Scholar
Borodinov, N., Neumayer, S., Kalinin, S.V., Ovchinnikova, O.S., Vasudevan, R.K., Jesse, S., npj Comput. Mater. 5, 5 (2019).Google Scholar
Ren, F., Ward, L., Williams, T., Laws, K.J., Wolverton, C., Hattrick-Simpers, J., Mehta, A., Sci. Adv. 4, eaaq1566 (2018).CrossRefGoogle Scholar
Segler, M.H.S., Preuss, M., Waller, M.P., Nature 555, 604 (2018).CrossRefGoogle Scholar
Jain, A., Shin, Y., Persson, K.A., Nat. Rev. Mater. 1, 15004 (2016).CrossRefGoogle Scholar
Yan, Q., Yu, J., Suram, S.K., Zhou, L., Shinde, A., Newhouse, P.F., Chen, W., Li, G., Persson, K.A., Gregoire, J.M., Neaton, J.B., Proc. Natl. Acad. Sci. U.S.A. 114, 3040 (2017).CrossRefGoogle Scholar
Ward, L., Agrawal, A., Choudhary, A., Wolverton, C., npj Comput. Mater. 2, 16028 (2016).CrossRefGoogle Scholar
Isayev, O., Oses, C., Toher, C., Gossett, E., Curtarolo, S., Tropsha, A., Nat. Commun. 8, 15679 (2017).CrossRefGoogle Scholar
Seko, A., Hayashi, H., Nakayama, K., Takahashi, A., Tanaka, I., Phys. Rev. B 95, 144110 (2017).CrossRefGoogle Scholar
Snyder, J.C., Rupp, M., Hansen, K., Müller, K.-R., Burke, K., Phys. Rev. Lett. 108, 253002 (2012).CrossRefGoogle Scholar
Butler, K.T., Davies, D.W., Cartwright, H., Isayev, O., Walsh, A., Nature 559, 547 (2018).CrossRefGoogle Scholar
Gossett, E., Toher, C., Oses, C., Isayev, O., Legrain, F., Rose, F., Zurek, E., Carrete, J., Mingo, N., Tropsha, A., Curtarolo, S., Comput. Mater. Sci. 152, 134 (2018).CrossRefGoogle Scholar
Ward, L., Dunn, A., Faghaninia, A., Zimmermann, N.E.R., Bajaj, S., Wang, Q., Montoya, J., Chen, J., Bystrom, K., Dylla, M., Chard, K., Asta, M., Persson, K.A., Snyder, G.J., Foster, I., Jain, A., Comput. Mater. Sci. 152, 60 (2018).CrossRefGoogle Scholar
National Academies of Sciences and Medicine, Data Science: Opportunities to Transform Chemical Sciences and Engineering: Proceedings of a Workshop—in Brief (National Academies Press, Washington, DC, 2018).Google Scholar
Hattrick-Simpers, J.R., Gregoire, J.M., Kusne, A.G., APL Mater . 4, 053211 (2016).CrossRefGoogle Scholar
Stein, H.S., Jiao, S., Ludwig, A., ACS Comb. Sci. 19, 1 (2017).CrossRefGoogle Scholar
Stanev, V., Vesselinov, V.V., Kusne, A.G., Antoszewski, G., Takeuchi, I., Alexandrov, B.S., npj Comput. Mater. 4, 43 (2018).CrossRefGoogle Scholar
Ermon, S., Le Bras, R., Suram, S.K., Gregoire, J.M., Gomes, C.P., Selman, B., Van Dover, R.B., “Pattern Decomposition with Complex Combinatorial Constraints: Application to Materials Discovery,” Proc. 29th AAAI Conf. Artif. Intell. (AAAI Press, Austin, TX, 2015).Google Scholar
Suram, S.K., Xue, Y., Bai, J., Le Bras, R., Rappazzo, B., Bernstein, R., Bjorck, J., Zhou, L., van Dover, R.B., Gomes, C.P., Gregoire, J.M., ACS Comb. Sci. 19, 37 (2017).CrossRefGoogle Scholar
Long, C.J., Bunker, D., Li, X., Karen, V.L., Takeuchi, I., Rev. Sci. Instrum. 80, 103902 (2009).CrossRefGoogle Scholar
Sanchez-Lengeling, B., Aspuru-Guzik, A., Science 361, 360 (2018).CrossRefGoogle Scholar
Zhang, Y., Ling, C., npj Comput. Mater. 4, 25 (2018).CrossRefGoogle Scholar
Gershman, S.J., Horvitz, E.J., Tenenbaum, J.B., Science 349, 273 (2015).CrossRefGoogle Scholar
Schmidt, M., Lipson, H., Science 324, 81 (2009).CrossRefGoogle Scholar
Waltz, D., Buchanan, B.G., Science 324, 43 (2009).10.1126/science.1172781CrossRefGoogle ScholarPubMed
Muggleton, S.H., Nature 440, 409 (2006).CrossRefGoogle Scholar
Kocsis, L., Szepesvári, C., “Bandit Based Monte-Carlo Planning,” Proc. Mach. Learn. ECML 2006, Fürnkranz, J., Scheffer, T., Spiliopoulou, M., Eds. (Springer, Berlin, Germany, 2006), pp. 282293.CrossRefGoogle Scholar
Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., Hubert, T., Baker, L., Lai, M., Bolton, A., Chen, Y., Nature 550 (7676), 354 (2017).CrossRefGoogle Scholar
Kaelbling, L.P., Littman, M.L., Moore, A.W., J. Artif. Intell. Res. (1996), https://arxiv.org/abs/cs/9605103v1 (accessed April 22, 2019).Google Scholar
Sutton, R.S., Barto, A.G., Reinforcement Learning, Second Edition (MIT Press, Cambridge, MA, 2018), https://mitpress.mit.edu/books/reinforcement-learning-second-edition (accessed April 22, 2019).Google Scholar
Sutton, R.S., Barto, A.G., Introduction to Reinforcement Learning (MIT Press, Cambridge, MA, 1998).CrossRefGoogle Scholar
Grisafi, A., Wilkins, D.M., Csányi, G., Ceriotti, M., Phys. Rev. Lett. 120, 036002 (2018).CrossRefGoogle Scholar
Gilmer, J., Schoenholz, S.S., Riley, P.F., Vinyals, O., Dahl, G.E., “Neural Message Passing for Quantum Chemistry,” Proc. 34th Int. Conf. Mach. Learn. 70 (JMLR.org, 2017), pp. 12631272, http://dl.acm.org/citation.cfm?id=3305381.3305512 (accessed April 19, 2019).Google Scholar
Kearnes, S., McCloskey, K., Berndl, M., Pande, V., Riley, P., J. Comput. Aided Mol. Des. 30, 595 (2016).CrossRefGoogle Scholar
Welborn, M., Cheng, L., Miller, T.F., J. Chem. Theory Comput. 14, 4772 (2018).CrossRefGoogle Scholar
Gomes, C., Bai, J., Xue, Y., Bjorck, J., Rappazzo, B., Ament, S., Bernstein, R., Kong, S., Suram, S., van Dover, R., Gregoire, J., MRS Commun. (forthcoming).Google Scholar
Roch, L.M., Häse, F., Kreisbeck, C., Tamayo-Mendoza, T., Yunker, L.P.E., Hein, J.E., Aspuru-Guzik, A., Sci. Robot. 3, eaat5559 (2018).CrossRefGoogle Scholar
Tabor, D.P., Roch, L.M., Saikin, S.K., Kreisbeck, C., Sheberla, D., Montoya, J.H., Dwaraknath, S., Aykol, M., Ortiz, C., Tribukait, H., Amador-Bedolla, C., Brabec, C.J., Maruyama, B., Persson, K.A., Aspuru-Guzik, A., Nat. Rev. Mater. 3, 5 (2018).CrossRefGoogle Scholar
Lookman, T., Balachandran, P.V., Xue, D., Yuan, R., npj Comput. Mater. 5, 25 (2019).CrossRefGoogle Scholar
Kusne, A.G., Gao, T., Mehta, A., Ke, L., Nguyen, M.C., Ho, K.-M., Antropov, V., Wang, C.-Z., Kramer, M.J., Long, C., Takeuchi, I., Sci. Rep. 4, 6367 (2014).CrossRefGoogle Scholar