Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-28T22:43:49.284Z Has data issue: false hasContentIssue false

An Atom-Probe Tomography Primer

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

Atom-probe tomography (APT) is in the midst of a dynamic renaissance as a result of the development of well-engineered commercial instruments that are both robust and ergonomic and capable of collecting large data sets, hundreds of millions of atoms, in short time periods compared to their predecessor instruments. An APT setup involves a field-ion microscope coupled directly to a special time-of-flight (TOF) mass spectrometer that permits one to determine the mass-to-charge states of individual field-evaporated ions plus their x-, y-, and z-coordinates in a specimen in direct space with subnanoscale resolution. The three-dimensional (3D) data sets acquired are analyzed using increasingly sophisticated software programs that utilize high-end workstations, which permit one to handle continuously increasing large data sets. APT has the unique ability to dissect a lattice, with subnanometer-scale spatial resolution, using either voltage or laser pulses, on an atom-by-atom and atomic plane-by-plane basis and to reconstruct it in 3D with the chemical identity of each detected atom identified by TOF mass spectrometry. Employing pico- or femtosecond laser pulses using visible (green or blue light) to ultraviolet light makes the analysis of metallic, semiconducting, ceramic, and organic materials practical to different degrees of success. The utilization of dual-beam focused ion-beam microscopy for the preparation of microtip specimens from multilayer and surface films, semiconductor devices, and for producing site-specific specimens greatly extends the capabilities of APT to a wider range of scientific and engineering problems than could previously be studied for a wide range of materials: metals, semiconductors, ceramics, biominerals, and organic materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Seidman, D.N., Rev. Sci. Instrum. 78, 030901 (2007).Google Scholar
2Thompson, K., Lawrence, D.J., Larson, D.J., Olson, J.D., Kelly, T.F., Gorman, B.P., Ultramicroscopy 107, 131 (2007).CrossRefGoogle Scholar
3Müller, E.W., Tsong, T.T., Field Ion Microscopy (American Elsevier Publishing Company, New York, 1969).Google Scholar
4Oppenheimer, J.R., Phys. Rev. 31, 67 (1928).Google Scholar
5Inghram, M.G., Gomer, R., J. Chem. Phys. 22, 1279 (1954).CrossRefGoogle Scholar
6Inghram, M.G., Gomer, R., Z. Naturforsch. 10a, 863 (1955).Google Scholar
7Müller, E.W., Bahadur, K., Phys. Rev. 102, 624 (1956).Google Scholar
8Müller, E.W., Bahadur, K., Phys. Rev. 99, 1651 (1955).Google Scholar
9Gomer, R., Field Emission and Field Ionization (Harvard University Press, Cambridge, MA, 1961), pp. 64102.Google Scholar
10Müller, E.W., Phys. Rev. 102, 618 (1956).CrossRefGoogle Scholar
11Gomer, R., J. Chem. Phys. 31, 341 (1959).Google Scholar
12Gomer, R., Swanson, L.W., J. Chem. Phys. 38, 1613 (1963).CrossRefGoogle Scholar
13Brandon, D.G., Surf. Sci. 3, 1 (1965).CrossRefGoogle Scholar
14Müller, E.W., Panitz, J.A., McLane, S.B., Rev. Sci. Instrum. 39, 83 (1968).Google Scholar
15Tsong, T.T., Atom-Probe Field-Ion Microscopy (Cambridge University Press, Cambridge, MA, 1990).CrossRefGoogle Scholar
16de Hoffmann, E., Stroubant, V., Mass Spectrometry (Wiley-Interscience, New York, 2007).Google Scholar
17Cerezo, A., Godfrey, T.J., Smith, G.D.W., Rev. Sci. Instrum. 59, 862 (1988).Google Scholar
18Miller, M.K., Cerezo, A., Hetherington, M.G., Smith, G.D.W., Atom Probe Field Ion Microscopy (Oxford University Press, Oxford, 1996).CrossRefGoogle Scholar
19Blavette, D., Deconihut, B., Bostel, A., Sarru, J.M., Bouet, M., Menand, A., Rev. Sci. Instrum. 64, 2911 (1993).CrossRefGoogle Scholar
20Miller, M.K., Atom Probe Tomography: Analysis at the Atomic Level (Kluwer Academic, Plenum Publishers, New York, 2000).CrossRefGoogle Scholar
21Panitz, J.A., Foesch, J.A., Rev. Sci. Instrum. 47, 44 (1976).Google Scholar
22Kelly, T.F., Camus, P.P., Larson, D.J., Holzman, L.M., Bajikav, S.S., Ultramicroscopy 62, 29 (1996).CrossRefGoogle Scholar
23Kelly, T.F., Larson, D.J., Mater. Charact. 44, 59 (2000).CrossRefGoogle Scholar
24Gribb, A.A., Kelly, T.F., Adv. Mater. Proc. 162 (2), 31 (2004).Google Scholar
25Gerstl, S.S.A., Seidman, D.N., Gribb, A.A., Kelly, T.F., Adv. Mater. Proc. 162 (10), 31 (2004).Google Scholar
26Thompson, K., Bunton, J.H., Kelly, T.F., Larson, D.J., J. Vac. Sci. Technol., B 24 (1), 421 (2006).Google Scholar
27Nishikawa, O., Kimoto, M., Appl. Surf. Sci. 76 (1–4), 424 (1994).Google Scholar
28da Costa, G., Vurpillot, F., Bostel, A., Bouet, M., Deconihout, B., Rev. Sci. Instrum. 76, 013304 (2005).Google Scholar
29Kellogg, G.L., Tsong, T.T., J. Appl. Phys. 51, 1184 (1980).CrossRefGoogle Scholar
30Gault, B., Vurpillot, F., Bostel, A., Menand, A., Deconihout, B., Appl. Phys. Lett. 86, 094101 (2005).Google Scholar
31Cerezo, A., Smith, G.D.W., Clifton, P.H., Appl. Phys. Lett. 88, 154103 (2006).Google Scholar
32Kellogg, G.L., J. Appl. Phys. 52, 5320 (1981).Google Scholar
33Panayi, P., Great Britain Patent Application GB2426120A (November 15, 2006).Google Scholar
34Scheinfein, M.R., Seidman, D.N., Rev. Sci. Instrum. 64, 3126 (1993).CrossRefGoogle Scholar
35Seidman, D.N., Annu. Rev. Mater. Res. 37, 127 (2007).CrossRefGoogle Scholar
36Krakauer, B.W., Hu, J.G., Kuo, S.M., Mallick, R.L., Seki, A., Seidman, D.N., Baker, J.P., Loyd, R., Rev. Sci. Instrum. 61, 3390 (1990).Google Scholar
37Krakauer, B.W., Seidman, D.N., Rev. Sci. Instrum. 63, 4071 (1992).Google Scholar
38Henjered, A., Nordén, H., J.Phys. E: Sci Instr. 16, 617 (1983).Google Scholar
39Karlsson, L., Nordén, H., Acta Metall. 36 (1988).Google Scholar
40Stiller, K., Colloque Phys. C8, 329 (1989).Google Scholar
41Krakauer, B.W., Seidman, D.N., Acta Mater. 46, 6145 (1998).Google Scholar
42Seidman, D.N., Annu. Rev. Mater. Res. 32, 235 (2002).CrossRefGoogle Scholar
43Herschitz, R., Seidman, D.N., Surf. Sci. 130, 63 (1983).Google Scholar
44Shashkov, D.A., Seidman, D.N., Phys. Rev. Lett. 75, 268 (1995).Google Scholar
45Yamamoto, M., Seidman, D.N., Surf. Sci. 118, 535 (1982).Google Scholar
46Yamamoto, M., Seidman, D.N., Nakamura, S., Surf. Sci. 118, 555 (1982).CrossRefGoogle Scholar
47Giannuzzi, L.A., Stevie, F.S., Micron 30, 197 (1999).CrossRefGoogle Scholar
48Larson, D.J., Foord, D.T., Petford-Long, A.K., Liew, H., Blamire, M.G., Cerezo, A., Smith, G.D.W., Ultramicroscopy 79, 287 (1999).CrossRefGoogle Scholar
49Larson, D.J., Petford-Long, A.K., Ma, Y.Q., Cerezo, A., Acta Mater. 52, 2847 (2004).Google Scholar
50Gault, B., Menand, A., de Geuser, F., Deconihout, B., Danoix, F., Appl. Phys. Lett. 88, 114101 (2006).Google Scholar
51Miller, M.K., Russell, K.F., Thompson, K., Alvis, R., Larson, D.J., Microsc. Microanal. 13 (6), 428 (2007).Google Scholar
52Chen, Y.M., Ohkubo, T., Kodzuka, M., Morita, K., Hono, K., Scripta Mater. 61, 693696 (2009).CrossRefGoogle Scholar