Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-05T08:39:03.827Z Has data issue: false hasContentIssue false

Advanced Structural Materials and Cladding

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

Advanced nuclear energy systems, both fission- and fusion-based, aim to operate at higher temperatures and greater radiation exposure levels than experienced in current light water reactors. Additionally, they are envisioned to operate in coolants such as helium and sodium that allow for higher operating temperatures. Because of these unique environments, different requirements and challenges are presented for both structural materials and fuel cladding. For core and cladding applications in intermediate-temperature reactors (400–650°C), the primary candidates are 9–12Cr ferritic–martensitic steels (where the numbers represent the weight percentage of Cr in the material, i.e., 9–12 wt%) and advanced austenitic steels, adapted to maximize high-temperature strength without compromising lower temperature toughness. For very high temperature reactors (>650°C), strength and oxidation resistance are more critical. In such conditions, high-temperature metals as well as ceramics and ceramic composites are candidates. For all advanced systems operating at high pressures, performance of the pressure boundary materials (i.e., those components responsible for containing the high-pressure liquids or gases that cool the reactor) is critical to reactor safety. For some reactors, pressure vessels are anticipated to be significantly larger and thicker than those used in light water reactors. The properties through the entire thickness of these components, including the effects of radiation damage as a function of damage rate, are important. For all of these advanced systems, optimizing the microstructures of candidate materials will allow for improved radiation and high-temperature performance in nuclear applications, and advanced modeling tools provide a basis for developing optimized microstructures.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 A Technology Roadmap for Generation IV Nuclear Energy Systems, Report No. GIF002–00 (U.S. Department of Energy, Washington, D.C., December 1, 2002); http://www.nuclear.energy.gov/genIV/documents/gen_iv_roadmap.pdf.Google Scholar
2 Hayner, G.O., Shaber, E.L., Mizia, R.E., Bratton, R.L., Sowder, W.K., Wright, R.N., Windes, W.E., Totemeier, T.C., Moore, K.A., “Next Generation Nuclear Plant Materials Research and Development Program Plan, Report No. INEEL/EXT-04–02347 (Idaho National Laboratory, Idaho Falls, ID, September 2004).Google Scholar
3 Hill, B., Argonne National Laboratory, private communication (2007).Google Scholar
4 Cawthorne, C., Fulton, E.J., Nature 216, 575 (1967).CrossRefGoogle Scholar
5 Strassland, J.L., Powell, R.W., Chin, B.A., J. Nucl. Mater. 108–109, 299 (1982).Google Scholar
6 Garner, F.A., in Nuclear Materials, Frost, B.R.T., Ed. (VCH, Weinheim, Germany, 1996), pp. 420543.Google Scholar
7 Masuyama, F., in Advanced Heat Resistant Steel for Power Generation, Viswanathan, R., Nutting, J., Eds. (Institute of Materials, London, 1999), p. 33.Google Scholar
8 Busby, J., Byun, T.S., Klueh, R., Maziasz, P., Vitek, J., Natesan, K., Li, M., Wright, R., Maloy, S., Toloczko, M., Motta, A., Wirth, B.D., Odette, G.R., Allen, T., “Candidate Developmental Alloys for Improved Structural Materials for Advanced Fast Reactors,” Report ORNL/TM-2008/040 (ORNL, Oak Ridge, TN, March 2008).Google Scholar
9 Horsten, M., van Osch, G.E., Gelles, D.S., Hamilton, M.L., in Effects of Irradiation on Materials: 19th International Symposium, ASTM STP 1366, Hamilton, M.L., Kumar, A.S., Rosinski, S.T., Grossbeck, M.L., Eds., (ASTM, West Conshohocken, PA, 2000), p. 579.Google Scholar
10 Ukai, S., Ohtsuka, S., Energy Mater. 2 (1), 26 (2007).Google Scholar
11 Ukai, S., Fujiwara, M., J. Nucl. Mater. 307–311, 749 (2002).CrossRefGoogle Scholar
12 Yoshitake, Y., Abe, Y., Akasaka, N., Ohtsuka, S., Ukai, S., Kimura, A., J. Nucl. Mater. 329–333, 342 (2004).CrossRefGoogle Scholar
13 Allen, T.R., Gan, J., Cole, J.I., Ukai, S., Shutthanandan, S., Thevuthasan, S., J. Nucl. Sci. Eng. 151, 305 (2005).CrossRefGoogle Scholar
14 Seki, M., Hirako, K., Kono, S., Kaito, T., Ukai, S., J. Nucl. Mater. 329–333, 1534 (2004).Google Scholar
15 Ukai, S., Kaito, T., Seki, M., Mayorshin, A.A., Shishalov, O.V., J. Nucl. Sci. Technol. 42 (1), 109 (2005).CrossRefGoogle Scholar
16 Klueh, R.L., Hashimoto, N., Maziasz, P.J., J. Nucl. Mater. 367–370, 48 (2007).CrossRefGoogle Scholar
17 Tavassoli, A.A.F., J. Nucl. Mater. 302, 73 (2002).CrossRefGoogle Scholar
18 Watanabe, T., Tsurekawa, S., Acta Mater. 47, 4171 (1999).Google Scholar
19 Gupta, G., Was, G.S., TMS Lett. 2, 71 (2005).Google Scholar
20 Tan, L., Sridharan, K., Allen, T.R., Nanstad, R.K., McClintock, D.A., J. Nucl. Mater. 374, 270 (2008).CrossRefGoogle Scholar
21 Schubert, F., in Proc. Symposium on Heat Exchanging Components of Gas Cooled Reactors, Dusseldorf, Germany, IWGGCR-9 (IAEA, Vienna, Austria, 1984), p. 309.Google Scholar
22 Burlet, H., Couturier, R., Dubiez, S., in Advanced Materials and Processes for Gas Turbines, Fuchs, G., James, A., Gabb, T., McLean, M., Harada, H., Eds. (TMS, Warrendale, PA, 2003), pp. 265273.Google Scholar
23 Jakobeit, W., Pfeifer, J.P., Ullrich, G., Nucl. Technol. 66, 195 (1984).Google Scholar
24 Furrer, D.U., Fecht, H.J., JOM 51, 14 (1999).Google Scholar
25 Couturier, R., Burlet, H., Terzi, S., Dubiez, S., Guetaz, L., Raisson, G., in Superalloys 2004, Green, K.A., Pollock, T.M., Harada, H., Howson, T.E., Reed, R.C., Schirra, J.J., Walston, S., Eds. (TMS, Warrendale, PA, 2004), pp. 351359.Google Scholar
26 Breitling, H., Dientz, W., Penkalla, H.J., in Proc. Symposium on High Temperature Metallic Materials for Gas-Cooled Reactors, Cracow, Poland, IWGGCR-18 (IAEA, Vienna, Austria, 1988), p. 91.Google Scholar
27 Burlet, H., Gentzbittel, J.M., Lamagnere, P., Blat, M., Renaud, D., Dubiez-Legoff, S., Pierron, D., Structural Materials for Innovative Nuclear Systems (SMINS) Workshop, Karlsruhe, Germany, 4–6 June 2007.Google Scholar
28 Klueh, R., Curr. Opin. Solid State Mater. Sci. 8, 239 (2004).Google Scholar
29 Samaras, M., Hoffelner, W., Victoria, M., J. Nucl. Mater. 371, 28 (2007).CrossRefGoogle Scholar
30 Soneda, N., de la Rubia, T. Diaz, Philos. Mag. A 78, 995 (1998).CrossRefGoogle Scholar
31 Hoffelner, W., Froideval, A., Pouchon, M., Chen, J., Samaras, M., Metall. Mater. Trans. A 39 (2), 212 (2008).CrossRefGoogle Scholar
32 Mirebeau, I., Hennion, M., Parette, G., Phys. Rev. Lett. 53, 687 (1984).CrossRefGoogle Scholar
33 Fu, C.C., Willaime, F., Ordejon, P., Phys. Rev. Lett. 92, 175503 (2004).Google Scholar
34 Olsson, P., Abrikosov, I.A., Vitos, L., Wallenius, J., J. Nucl. Mater. 321, 84 (2003).CrossRefGoogle Scholar
35 Klaver, T.P. C., Drautz, R., Finnis, M.W., Phys. Rev. B 74, 094435 (2006).Google Scholar
36 Caro, A., Crowson, D.A., Caro, M., Phys. Rev. Lett. 95, 075702 (2005).CrossRefGoogle Scholar
37 Caro, A., Caro, M., Klaver, P., Sadigh, B., Lopasso, E.M., Srinivasan, S.G., JOM 59, 52 (2007).CrossRefGoogle Scholar
38 Klaver, T.P.C., Olsson, P., Finnis, M.W., Phys. Rev. B 76, 214110 (2007).Google Scholar
39 Froideval, A., Iglesias, R., Samaras, M., Schuppler, S., Nagel, P., Grolimund, D., Victoria, M., Hoffelner, W., Phys. Rev. Lett. 99, 237201 (2007).Google Scholar
40 Borca, C., Samaras, M., Victoria, M., Hoffelner, W., “Local structure of binary Fe–Cr alloys probed by EXAFS,” in preparation.Google Scholar
41 Hoffelner, W., Pouchon, M., Samaras, M., Froideval, A., Chen, J., submitted as a proceedings paper to HTR 2008, (ASME, Washington, D.C., 2008).Google Scholar
42 Samaras, M., Victoria, M., Mater. Today, manuscript accepted.Google Scholar
43 Miller, M.K., Russell, K.F., Sokolov, M.A., Nanstad, R.K., J. Nucl. Mater. 361, 248 (2007).CrossRefGoogle Scholar
44 Urban, K.W., MRS Bull. 32 (11), 946 (2007).Google Scholar
45 Patterson, B.D., Abela, R., van der Veen, J.F., Swiss Phys. Soc. Newsl. 23, 16 (2008).Google Scholar
46 van der Veen, J.F., Synchrotron Radiat. Instrum. 705, 3 (2004).Google Scholar