Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-26T06:11:20.816Z Has data issue: false hasContentIssue false

Advanced microelectromechanical systems-based nanomechanical testing: Beyond stress and strain measurements

Published online by Cambridge University Press:  11 June 2019

Sanjit Bhowmick
Affiliation:
Bruker Nano Inc., USA; [email protected]
Horacio Espinosa
Affiliation:
McCormick School of Engineering and Applied Sciences, Northwestern University, USA; [email protected]
Katherine Jungjohann
Affiliation:
Center for Integrated Nanotechnologies, USA; [email protected]
Thomas Pardoen
Affiliation:
Institute of Mechanics, Materials and Civil Engineering, Universite Catholique de Louvain, Belgium; [email protected]
Olivier Pierron
Affiliation:
Woodruff School of Mechanical Engineering, Georgia Institute of Technology, USA; [email protected]
Get access

Abstract

The field of in situ nanomechanics is greatly benefiting from microelectromechanical systems (MEMS) technology and integrated microscale testing machines that can measure a wide range of mechanical properties at nanometer scales, while characterizing the damage or microstructure evolution in electron microscopes. This article focuses on the latest advances in MEMS-based nanomechanical testing techniques that go beyond stress and strain measurements under typical monotonic loadings. Specifically, recent advances in MEMS testing machines now enable probing key mechanical properties of nanomaterials related to fracture, fatigue, and wear. Tensile properties can be measured without instabilities or at high strain rates, and signature parameters such as activation volume can be obtained. Opportunities for environmental in situ nanomechanics enabled by MEMS technology are also discussed.

Type
Advances in In situ Nanomechanical Testing
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Dehm, G., Jaya, B.N., Raghavan, R., Kirchlechner, C., Acta Mater . 142, 248 (2018).CrossRefGoogle Scholar
Espinosa, H.D., Bernal, R.A., Filleter, T., Small 8, 3233 (2012).CrossRefGoogle Scholar
Haque, M.A., Espinosa, H.D., Lee, H.J., MRS Bull . 35, 375 (2010).CrossRefGoogle Scholar
Hytch, M.J., Minor, A.M., MRS Bull . 39, 138 (2014).CrossRefGoogle Scholar
Legros, M., C. R. Phys. 15, 224 (2014).CrossRefGoogle Scholar
Legros, M., Gianola, D.S., Motz, C., MRS Bull . 35, 354 (2010).CrossRefGoogle Scholar
Ramachandramoorthy, R., Bernal, R., Espinosa, H.D., ACS Nano 9, 4675 (2015).CrossRefGoogle Scholar
Yu, Q., Legros, M., Minor, A.M., MRS Bull . 40, 62 (2015).CrossRefGoogle Scholar
Zhu, Y., Chang, T.H., J. Micromech. Microeng. 25, 21 (2015).Google Scholar
Kacher, J., Zhu, T., Pierron, O.N., Spearot, D., Curr. Opin. Solid State Mater. Sci. (2019), https://doi.org/10.1016/j.cossms.2019.03.003.Google Scholar
Bernal, R.A., Aghaei, A., Lee, S., Ryu, S., Sohn, K., Huang, J.X., Cai, W., Espinosa, H., Nano Lett . 15, 139 (2015).CrossRefGoogle Scholar
Ramachandramoorthy, R., Gao, W., Bernal, R., Espinosa, H., Nano Lett . 16, 255 (2016).CrossRefGoogle Scholar
Ramachandramoorthy, R., Wang, Y.M., Aghaei, A., Richter, G., Cai, W., Espinosa, H.D., ACS Nano 11, 4768 (2017).CrossRefGoogle Scholar
Filleter, T., Bernal, R., Li, S., Espinosa, H.D., Adv. Mater. 23, 2855 (2011).CrossRefGoogle Scholar
Peng, B., Locascio, M., Zapol, P., Li, S.Y., Mielke, S.L., Schatz, G.C., Espinosa, H.D., Nat. Nanotechnol. 3, 626 (2008).CrossRefGoogle Scholar
Pantano, M.F., Bernal, R.A., Pagnotta, L., Espinosa, H.D., Meccanica 50, 549 (2015).CrossRefGoogle Scholar
Bernal, R., Ramachandramoorthy, R., Espinosa, H.D., Ultramicroscopy 156, 23 (2015).CrossRefGoogle Scholar
Sannicolo, T., Lagrange, M., Cabos, A., Celle, C., Simonato, J.P., Bellet, D., Small 12, 6052 (2016).CrossRefGoogle Scholar
Ramachandramoorthy, R., Milan, M., Lin, Z.W., Trolier-McKinstry, S., Corigliano, A., Espinosa, H., Extreme Mech. Lett. 20, 14 (2018).CrossRefGoogle Scholar
Zhu, T., Li, J., Samanta, A., Leach, A., Gall, K., Phys. Rev. Lett. 100, 025502 (2008).CrossRefGoogle Scholar
Hosseinian, E., Legros, M., Pierron, O.N., Nanoscale 8, 9234 (2016).CrossRefGoogle ScholarPubMed
Gupta, S., Pierron, O., J. Microelectromech. Syst. 26, 1082 (2017).CrossRefGoogle Scholar
Gupta, S., Pierron, O.N., Extreme Mech. Lett. 8, 167 (2016).CrossRefGoogle Scholar
Bernal, R.A., Filleter, T., Connell, J.G., Sohn, K., Huang, J.X., Lauhon, L.J., Espinosa, H.D., Small 10, 725 (2014).CrossRefGoogle Scholar
van der Rest, A., Idrissi, H., Henry, F., Favache, A., Schryvers, D., Proost, J., Raskin, J.P., Van Overmeere, Q., Pardoen, T., Acta Mater . 125, 27 (2017).CrossRefGoogle Scholar
Passi, V., Bhaskar, U., Pardoen, T., Sodervall, U., Nilsson, B., Petersson, G., Hagberg, M., Raskin, J.P., J. Microelectromech. Syst. 21, 822 (2012).CrossRefGoogle Scholar
Yagnamurthy, S., Boyce, B.L., Chasiotis, I., J. Microelectromech. Syst. 24, 1436 (2015).CrossRefGoogle Scholar
Zhang, P., Ma, L.L., Fan, F.F., Zeng, Z., Peng, C., Loya, P.E., Liu, Z., Gong, Y.J., Zhang, J.N., Zhang, X.X., Ajayan, P.M., Zhu, T., Lou, J., Nat. Commun. 5, 7 (2014).Google Scholar
Hatty, V., Kahn, H., Heuer, A.H., J. Microelectromech. Syst. 17, 943 (2008).CrossRefGoogle Scholar
Jaddi, S., Coulombier, M., Raskin, J.P., Pardoen, T., J. Mech. Phys. Solids 123, 267 (2019).CrossRefGoogle Scholar
Pineau, A., Benzerga, A.A., Pardoen, T., Acta Mater. 107, 424 (2016).CrossRefGoogle Scholar
de Boer, M.P., Corwin, A.D., Kotula, P.G., Baker, M.S., Michael, J.R., Subhash, G., Shaw, M.J., Acta Mater . 56, 3313 (2008).CrossRefGoogle Scholar
Jonnalagadda, K., Karanjgaokar, N., Chasiotis, I., Chee, J., Peroulis, D., Acta Mater . 58, 4674 (2010).CrossRefGoogle Scholar
Hosokawa, H., Desai, A.V., Haque, M.A., Thin Solid Films 516, 6444 (2008).CrossRefGoogle Scholar
Lanning, W.R., Javaid, S.S., Muhlstein, C.L., Fatigue Fract. Eng. Mater. Struct. 40, 1809 (2017).CrossRefGoogle Scholar
Mompiou, F., Legros, M., Boe, A., Coulombier, M., Raskin, J.P., Pardoen, T., Acta Mater. 61, 205 (2013).CrossRefGoogle Scholar
Hosseinian, E., Gupta, S., Pierron, O.N., Legros, M., Acta Mater . 143, 77 (2018).CrossRefGoogle Scholar
Kumar, S., Alam, M.T., Haque, M.A., J. Microelectromech. Syst. 20, 53 (2011).CrossRefGoogle Scholar
Barrios, A., Gupta, S., Castelluccio, G.M., Pierron, O.N., Nano Lett . 18, 2595 (2018).CrossRefGoogle Scholar
Sadeghi-Tohidi, F., Pierron, O.N., Acta Mater . 106, 388 (2016).CrossRefGoogle Scholar
Sadeghi-Tohidi, F., Pierron, O.N., Extreme Mech. Lett. 9, 97 (2016).CrossRefGoogle Scholar
Hosseinian, E., Pierron, O., Nanoscale 5, 12532 (2013).CrossRefGoogle Scholar
Bufford, D.C., Stauffer, D., Mook, W.M., Asif, S.A.S., Boyce, B.L., Hattar, K., Nano Lett . 16, 4946 (2016).CrossRefGoogle Scholar
Jenei, I.Z., Dassenoy, F., Tribol. Lett. 65, 8 (2017).CrossRefGoogle Scholar
Hintsala, E.D., Stauffer, D.D., Oh, Y., Asif, S.A.S., JOM 69, 51 (2017).CrossRefGoogle Scholar
Bhowmick, S., Hintsala, E., Stauffer, D., Asif, S.A.S., Microsc. Microanal. 24, 1934 (2018).CrossRefGoogle Scholar
Sato, T., Tochigi, E., Mizoguchi, T., Ikuhara, Y., Fujita, H., Microelectron. Eng. 164, 43 (2016).CrossRefGoogle Scholar
Elhebeary, M., Saif, M.T.A., Extreme Mech. Lett. 23, 1 (2018).CrossRefGoogle Scholar
Lapouge, P., Onimus, F., Coulombier, M., Raskin, J.P., Pardoen, T., Brechet, Y., Acta Mater. 131, 77 (2017).CrossRefGoogle Scholar
Lapouge, P., Onimus, F., Vayrette, R., Raskin, J.P., Pardoen, T., Brechet, Y., J. Nucl. Mater. 476, 20 (2016).CrossRefGoogle Scholar
Boyes, E.D., Gai, P.L., C. R. Phys. 15, 200 (2014).CrossRefGoogle Scholar
Gianola, D.S., Sedlmayr, A., Mönig, R., Volkert, C.A., Major, R.C., Cyrankowski, E., Asif, S., Warren, O.L., Kraft, O., Rev. Sci. Instrum. 82, 063901 (2011).CrossRefGoogle Scholar
Epicier, T., Joly-Pottuz, L., Jenei, I., Stauffer, D., Dassenoy, F., Masenelli-Varlot, K., Proc. Eur. Microsc. Congr. 2016 (Wiley Online Library, 2016), pp. 145146.CrossRefGoogle Scholar
Ferreira, P., Robertson, I., Birnbaum, H., Acta Mater . 46, 1749 (1998).CrossRefGoogle Scholar
Xie, D., Li, S., Li, M., Wang, Z., Gumbsch, P., Sun, J., Ma, E., Li, J., Shan, Z., Nat. Commun. 7, 13341 (2016).CrossRefGoogle Scholar
Jungjohann, K., Carter, C.B., in Transmission Electron Microscopy (Springer, 2016), pp. 1780.CrossRefGoogle Scholar
Jungjohann, K.L., Mook, W., Chisholm, C., Shaw, M., Hattar, K.M., Galambos, P.C., Leenheer, A.J., Hearne, S.J. (Google Patents, 2018).Google Scholar