Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-13T09:43:34.778Z Has data issue: false hasContentIssue false

Advanced Gettering Techniques in ULSI Technology

Published online by Cambridge University Press:  31 January 2011

Get access

Extract

Progress in silicon technology has been phenomenal since the invention of the transistor some 50 years ago. Device performance has improved by at least a factor of a million in every respect. As the minimum feature size on chips decreases toward 0.1 μm, which should be reached on a mass-production scale in a few years, the device yield is becoming ever more sensitive to defects and impurities. Transition metals, particularly iron, nickel, and copper, are the most common and most detrimental contaminants on a process line, and they can be unintentionally introduced in nearly every process step, including ingot growth, wafer handling, ion implantation, wet-chemical cleaning, high-temperature anneals, or oxidation. To avoid yield losses, the silicon industry has to be very strict with respect to metal-contamination levels on the production line. For instance, for iron, the Semiconductor Industry Association (SIA) Roadmap presently specifies 2.5 ϗ 1010 cm−2 as the maximum tolerable surface concentration, decreasing to 5 ϗ 109 cm−2 by 2004.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Henley, W.B., Jastrzebski, L., and Haddad, N.F., J. Non-Cryst. Solids 187 (1995) p. 134.CrossRefGoogle Scholar
2.Honda, K., Ohsawa, A., and Nakanishi, T., J. Electrochem. Soc. 142 (1995) p. 3486.Google Scholar
3.Honda, K., Nakanishi, T., Ohsawa, A.W., and Toyokura, N., J. Appl. Phys. 62 (1987) p. 1960.Google Scholar
4.Burte, E.P. and Aderhold, W., Solid-State Electron. 41 (1997) p. 1021.Google Scholar
5.Miyazaki, M., Miyazaki, S., Kitamura, T., Aoki, T., Nakashima, Y., Hourai, M., and Shigematsu, T., Jpn. J. Appl. Phys. 34 (1995) p. 409.Google Scholar
6.Mertens, P.W., Meuris, M., Schmidt, H.F., Verhaverbeke, S., Heyns, M.M., Carr, P., Gräf, D., Schnegg, A., Kubota, M., Dillenbeck, K., and de Blank, R., in Crystalline Defects and Contamination: Their Impact and Control in Device Manufacturing, Vol. 93–15, edited by Kolbesen, B.O., Claeys, C., Stallhofer, P., and Tardif, F. (The Electrochemical Society, Grenoble, France, 1993) p. 87.Google Scholar
7.Ohsawa, A., Honda, K., Takizawa, R., Nakanishi, T., Aoki, M., and Toyokura, N., in Semiconductor Silicon-1990, edited by Huff, H.R., Barraclough, K.G., and Chikawa, J.I. (The Electrochemical Society, Pennington, NJ, 1990) p. 601.Google Scholar
8.Hiramoto, K., Sano, M., Sadamitsu, S., and Fujino, N., Jpn. J. Appl. Phys., Part 2: Lett. 28 (1989) p. L2109.Google Scholar
9.Rieger, W., in Crystalline Defects and Contamination: Their Impact and Control in Device Manufacturing, Vol. 93–15, edited by Kolbesen, B.O., Claeys, C., Stallhofer, P., and Tardif, F. (The Electrochemical Society, Grenoble, France, 1993) p. 103.Google Scholar
10.De Gendt, S., Knotter, D.M., Kenis, K., Mertens, P.W., and Heyns, M.M., J. Electrochem. Soc. 145 (1998) p. 2589.CrossRefGoogle Scholar
11.Tardif, F., Lardin, T., Paillet, C., Bremond, D., Joly, J.P., Martin, F., Mur, P., Mouche, L., Patruno, P., Tonti, A., Levy, D., Barla, K., and Sievert, W., in Ultra-Clean Processing of Silicon Surfaces-II, edited by Heyns, M. (Acco, Leuven, Belgium, 1994) p. 309.Google Scholar
12.Saito, S., Hamada, K., Eaglesham, D.J., Shiramizu, Y., Benton, J.L., Kitajima, H., Jacobson, S.D.C., and Poate, J.M., in Science and Technology of Semiconductor Surface Preparation, edited by Higashi, G.S., Hirose, M., Raghavan, S., and Verhaverbeke, S. (Mater. Res. Soc. Symp. Proc. 477, Pittsburgh, 1997) p. 81.Google Scholar
13.Kirscht, F.G. and Kanungo, N.R., in Contamination Control and Defect Reduction in Semiconductor Manufacturing II, Vol. 94–3, edited by Novak, R., Schmidt, D.N., Ito, T., and Reedy, D. (The Electrochemical Society, Pennington, NJ, 1994) p. 38.Google Scholar
14.D'Amico, J., Jastrzebski, L., Wilson, M., and Savtchouk, A., in In-Line Methods and Monitors for Process and Yield Improvement, Vol. 3884, edited by Ajuria, S. and Jakubczak, J.F. (SPIE—The International Society for Optical Engineering, Bellingham, WA, 1999) p. 124.CrossRefGoogle Scholar
15.Ravi, K.V. (private communication).Google Scholar
16.Wilson, M., Lagowski, J., Savtchouk, A., Jastrzebski, L., D'Amico, J., DeBusk, D.K., and Buczkowski, A., in Diagnostic Techniques for Semiconductor Materials and Devices, edited by Kolbesen, B.O., Claeys, C.L., Stallhofer, P., Tardif, F., Benton, J., Shaffner, T.J., Schroder, D.K., Kishino, S., and Rai-Choudhury, P. (The Electrochemical Society, Pennington, NJ, 1999) p. 373.Google Scholar
17.Reiss, J.H., King, R.R., and Mitchell, K.W., Appl. Phys. Lett. 68 (1996) p. 3302.Google Scholar
18.Schröter, W. and Kühnapfel, R., Appl. Phys. Lett. 56 (1990) p. 2207.Google Scholar
19.Spiecker, E., Seibt, M., and Schröter, W., Phys. Rev. B 55 (1997) p. 9577.CrossRefGoogle Scholar
20.Graff, K., Metal Impurities in Silicon-Device Fabrication (Springer-Verlag, Berlin, 1995).CrossRefGoogle Scholar
21.Istratov, A.A., Flink, C., Hieslmair, H., Weber, E.R., and Heiser, T., Phys. Rev. Lett. 81 (1998) p. 1243.CrossRefGoogle Scholar
22.Hieslmair, H., Istratov, A.A., and Weber, E.R., Semicond. Sci. Technol. 13 (1998) p. 1401.CrossRefGoogle Scholar
23.Hieslmair, H., McHugo, S.A., Istratov, A.A., and Weber, E.R., in Properties of Crystalline Silicon, edited by Hull, R. (INSPEC, Short Run Press, Exeter, 1999) p. 775.Google Scholar
24.McHugo, S.A. and Hieslmair, H., in Wiley Encyclopedia of Electrical and Electronics Engineering, Vol. 8, edited by Webster, J.G. (John Wiley & Sons, New York, 1999) p. 388.Google Scholar
25.Myers, S.M., Seibt, M., and Schröter, W., J. Appl. Phys. in press.Google Scholar
26.Istratov, A.A., Hieslmair, H., and Weber, E.R., Appl. Phys. A 70 (2000) p. 489.Google Scholar
27.Tan, T.Y., Gardner, E.E., and Tice, W.K., Appl. Phys. Lett. 30 (1977) p. 175.CrossRefGoogle Scholar
28.Gilles, D., Weber, E.R., and Hahn, S.K., Phys. Rev. Lett. 64 (1990) p. 196.Google Scholar
29.Aoki, M., Hara, A., and Ohsawa, A., Jpn. J. Appl. Phys. 30 (1991) p. 3580.Google Scholar
30.Aoki, M., Hara, A., and Ohsawa, A., J. Appl. Phys. 72 (1992) p. 895.Google Scholar
31.Aoki, M. and Hara, A., Jpn. J. Appl. Phys. Part 2: Lett. 35 (1996) p. L1231.Google Scholar
32.Hieslmair, H., Istratov, A.A., McHugo, S.A., Flink, C., Heiser, T., and Weber, E.R., Appl. Phys. Lett. 72 (1998) p. 1460.Google Scholar
33.Ramappa, D.A. and Henley, W.B., J. Electrochem. Soc. 144 (1997) p. 4353.Google Scholar
34.Aoki, M. and Hara, A., J. Appl. Phys. 74 (1993) p. 1440.CrossRefGoogle Scholar
35.Bhatti, A.R., Falster, R., and Booker, G.R., Solid State Phenom. 19–20 (1991) p. 51.Google Scholar
36.Ourmazd, A. and Schröter, W., Appl. Phys. Lett. 45 (1984) p. 781.Google Scholar
37.Shen, B., Sekiguchi, T., Jablonski, J., and Sumino, K., J. Appl. Phys. 76 (1994) p. 4540.CrossRefGoogle Scholar
38.Ronay, M. and Schad, R.G., Phys. Rev. Lett. 64 (1990) p. 2042.Google Scholar
39.Falster, R., Laczik, Z., Booker, G.R., and Török, P., Solid State Phenom. 19–20 (1991) p. 33.Google Scholar
40.Istratov, A.A., Vyvenko, O.F., Flink, C., Heiser, T., Hieslmair, H., and Weber, E.R., in Defect and Impurity Engineered Semiconductors and Devices II, edited by Ashok, S., Chevallier, J., Sumino, K., Sopori, B.L., and Götz, W. (Mater. Res. Soc. Symp. Proc. 510, Warrendale, PA, 1998) p. 313.Google Scholar
41.Istratov, A.A., Flink, C.F., Hieslmair, H., McHugo, S.A., and Weber, E.R., Mater. Sci. Eng., B 72 (2–3) (2000) p. 99.CrossRefGoogle Scholar
42.Benton, J.L., Stolk, P.A., Eaglesham, D.J., Jacobson, D.C., Cheng, J.Y., Poate, J.M., Ha, N.T., Haynes, T.E., and Myers, S.M., J. Appl. Phys. 80 (1996) p. 3275.Google Scholar
43.Stolk, P.A., Benton, J.L., Eaglesham, D.J., Jacobson, D.C., Cheng, J.Y., Poate, J.M., Myers, S.M., and Haynes, T.E., Appl. Phys. Lett. 68 (1996) p. 51.Google Scholar
44.Hayamizu, Y., Tobe, S., Takeno, H., and Kitagawara, Y., in Semiconductor Silicon-1998, Vol. PV–98–1, edited by Huff, H., Gösele, U., and Tsuya, H. (The Electrochemical Society, Pennington, NJ, 1998) p. 1080.Google Scholar
45.Aoki, M., Itakura, T., and Sasaki, N., Appl. Phys. Lett. 66 (1995) p. 2709.Google Scholar
46.Gilles, D., Schröter, W., and Bergholz, W., Phys. Rev. B 41 (1990) p. 5770.Google Scholar
47.Istratov, A.A., Hieslmair, H., and Weber, E.R., Appl. Phys. A 69 (1999) p. 13.Google Scholar
48.McHugo, S.A., McDonald, R.J., Smith, A.R., Hurley, D.L., and Weber, E.R., Appl. Phys. Lett. 73 (1998) p. 1424.CrossRefGoogle Scholar
49.Tobe, S., Hayamizu, Y., and Kitagawara, Y., J. Appl. Phys. 84 (1998) p. 1279.Google Scholar
50.Miyazaki, M., Miyazaki, S., Ogushi, S., Ochiai, T., Sano, M., and Shigematsu, T., Jpn. J. Appl. Phys., Part 2: Lett. 36 (1997) p. L380.Google Scholar
51.Kononchuk, O., Brown, R.A., Radzimski, Z., Rozgonyi, G.A., and Gonzalez, F., Appl. Phys. Lett. 69 (1996) p. 4203.CrossRefGoogle Scholar
52.Benton, J.L., Stolk, P.A., Eaglesham, D.J., Jacobson, D.C., Cheng, J.Y., Poate, J.M., Myers, S.M., and Haynes, T.E., J. Electrochem. Soc. 143 (1996) p. 1406.Google Scholar
53.McHugo, S.A., Weber, E.R., Myers, S.M., and Petersen, G.A., in Microstructure Evolution During Irradiation, edited by Robertson, I.M., Was, G.S., Hobbs, L.W., and de la Rubia, T. Diaz (Mater. Res. Soc. Symp. Proc. 439, Pittsburgh, 1997) p. 149.Google Scholar
54.Stolk, P.A., Gossmann, H.-J., Eaglesham, D.J., and Poate, J.M., Nucl. Instrum. Methods Phys. Res., Sect. B 96 (1995) p. 187.Google Scholar
55.Hieslmair, H., Istratov, A.A., McHugo, S.A., Flink, C., and Weber, E.R., J. Electrochem. Soc. 145 (1998) p. 4259.CrossRefGoogle Scholar
56.Smith, A.L., Ahn, S.H., and Kimmerling, L.C., in Semiconductor Silicon 1998, Vol. PV–98–p1, edited by Huff, H., Gösele, U., and Tsuya, H. (The Electrochemical Society, Pennington, NJ, 1998) p. 1138.Google Scholar