Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-25T17:41:25.410Z Has data issue: false hasContentIssue false

“Wave-Function Imaging” Studies of High-Tc Superconductivity

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

High-temperature superconductivity in the cuprates emerges when the localized electrons of a Mott insulator become mobile due to carrier doping. Understanding both the electronic ground state and the excited states of these systems are key challenges in physics today. Angle-resolved photoemission spectroscopy (ARPES) and inelastic neutron-scattering (INS) studies have been remarkably successful in mapping the momentum-space characteristics of the cuprate electronic structure. However, since cuprate superconductivity develops from atomically localized electrons and exhibits nanoscale disorder, a pure momentum-space description is unlikely to be sufficient. Instead, simultaneous information on electronic structure at the nanoscale in real space, and throughout momentum space, is required. Here, we describe a combination of novel spectroscopic imaging scanning tunneling microscopy (SI-STM) techniques that we have developed to achieve these apparently contradictory aims, along with the outcome of a series of SI-STM studies of the electronic structure of Bi2Sr2CaCu2O8+x.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Bishop, A.R., Shenoy, S.R., and Sridhar, S., eds., Intrinsic Multiscale Structure and Dynamics in Complex Electronic Oxides, Proceedings of the Workshop (ICTP/Center for Theoretical Physics, Trieste, Italy, 2002).Google Scholar
2. For example, see Schrieffer, J.R., Theory of Superconductivity (W.A. Benjamin, New York, 1964).Google Scholar
3. For example, see Tinkham, M., Introduction to Superconductivity (McGraw-Hill, New York, 1975).Google Scholar
4.Eisaki, H., Kaneko, N., Feng, D.L., Damascelli, A., Mang, P.K., Shen, K.M., Shen, Z.-X., and Greven, M., Phys. Rev. B 69 064512(2004).CrossRefGoogle Scholar
5.Timusk, T. and Statt, B., Rep. Prog. Phys. 62 (1999) p. 61.CrossRefGoogle Scholar
6.Van Harlingen, D.J., Rev. Mod. Phys. 67 (1995) p. 515.CrossRefGoogle Scholar
7.Tsuei, C.C. and Kirtley, J.R., Rev. Mod. Phys. 72 (2000) p. 969.CrossRefGoogle Scholar
8.Hudson, E.W., Pan, S.H., Gupta, A.K., Ng, K.-W., and Davis, J.C., Science 285 (1999) p. 88.CrossRefGoogle Scholar
9.Madhavan, V., Lang, K.M., Hudson, E.W., Pan, S.H., Eisaki, H., Uchida, S., and Davis, J.C., Bull. Amer. Phys. Soc. 45 (2000) p. 416.Google Scholar
10.Hoffman, J.E., McElroy, K., Lee, D.-H., Lang, K.M., Eisaki, H., Uchida, S., and Davis, J.C., Science 297 (2002) p. 1148.CrossRefGoogle Scholar
11.McElroy, K., Simmonds, R.W., Hoffman, J.E., Lee, D.-H., Orenstein, J., Eisaki, H., Uchida, S., and Davis, J.C., Nature 422 (2003) p. 592.CrossRefGoogle Scholar
12.Hoffman, J.E., Hudson, E.W., Lang, K.M., Madhavan, V., Eisaki, H., Uchida, S., and Davis, J.C., Science 295 (2002) p. 466.CrossRefGoogle Scholar
13.Pan, S.H., O'Neal, J.P., Badzey, R.L., Chamon, C., Ding, H., Engelbrecht, J.R., Wang, Z., Eisaki, H., Uchida, S., Gupta, A.K., Ng, K.-W., Hudson, E.W., Lang, K.M., and Davis, J.C., Nature 413 (2001) p. 282.CrossRefGoogle Scholar
14.Lang, K.M., Madhavan, V., Hoffman, J.E., Hudson, E.W., Eisaki, H., Uchida, S., and Davis, J.C., Nature 415 (2002) p. 412.CrossRefGoogle Scholar
15.Gao, Y., Lee, P., Coppens, P., Subramanian, M.A., and Sleight, A.W., Science 241 (1988) p. 954.CrossRefGoogle Scholar
16.Damascelli, A., Hussain, Z., and Shen, Z.-X., Rev. Mod. Phys. 75 (2003) p. 473.CrossRefGoogle Scholar
17.Wang, Q.-H. and Lee, D.-H., Phys. Rev. B 67 020511(2003).CrossRefGoogle Scholar
18.Scalapino, D.J., Nunner, T., and Hirschfeld, P., “Relating STM, ARPES, and transport in the cuprate superconducting state,” preprint, condmat/ 0409204 (accessed March 2005).Google Scholar
19.McElroy, K., Lee, D.-H., Hoffman, J.E., Lang, K.M., Lee, J., Hudson, E.W., Eisaki, H., Uchida, S., and Davis, J.C., “Destruction of antinodal state coherence via ‘checkerboard’ charge ordering in strongly underdoped superconducting BSCCO-2212,” preprint, cond-mat/0406491 (accessed March 2005) submitted to Phys. Rev. Lett. (2005).Google Scholar
20.Liu, J.-X, Wan, J.-C., Goldman, A.M., Chang, Y.C., and Jiang, P.Z., Phys. Rev. Lett. 67 (1991) p. 2195; A. Chang, Z.Y. Rong, Y.M. Ivanchenko, F. Lu, and E.L. Wolf, Phys. Rev. B 46 (1992) p. 5692; V. Madhavan, K.M. Lang, E.W. Hudson, S.H. Pan, H. Eisaki, S. Uchida, and J.C. Davis, Bull. Amer. Phys. Soc. 45 (2000) p. 416; S.H. Pan, J.P. O'Neal, R L. Badzey, C. Chamon, H. Ding, J.R. Engelbrecht, Z.Wang, H. Eisaki, S. Uchida, A.K. Gupta, K.-W. Ng, E.W. Hudson, K.M. Lang, and J.C. Davis, Nature 413 (2001) p. 282; K.M. Lang, V. Madhavan, J.E. Hoffman, E.W. Hudson, H. Eisaki, S. Uchida, and J.C. Davis, Nature 415 (2002) p. 412; C. Howald, P. Fournier, and A. Kapitulnik, Phys. Rev. B 64 100504(2001); T. Cren, D. Roditchev, W. Sacks, and J. Klein, Euro. Phys. Lett. 54 (2001) p. 84; A. Matsuda, S. Sugita, T. Fujii, and T. Watanabe, J. Phys. Chem. Solids 62 (2001) p. 65; Physica C 388 (2003) p. 207; G. Kinoda, T. Hasegawa, S. Nakao, T. Hanaguri, K. Kitazawa, K. Shimizu, J. Shimoyama, and K. Kishio, Phys. Rev. B 67 224509(2003); K. McElroy, R.W. Simmonds, J.E. Hoffman, D.-H. Lee, J. Orenstein, H. Eisaki, S. Uchida, and J.C. Davis, Nature 422 (2003) p. 592.CrossRefGoogle Scholar
21.Vojta, M., Phys. Rev. B 66 104505(2002); H.-D. Chen, J.-P. Hu, S. Capponi, E. Arrigoni, and S.-C. Zhang, Phys. Rev. Lett. 89 137004(2003); C. Howald, H. Eisaki, N. Kaneko, M. Greven, and A. Kapitulnik, Phys. Rev. B 67 014533(2003); A.S. Mishchenko and N. Nagaosa, Phys. Rev. Lett. 93 036402(2004); H.-D. Chen, O. Vafek, A. Yazdani, and S.-C. Zhang, “Pair density wave in the pseudogap state of high-temperature superconductors,” preprint, cond-mat/0402323 (accessed March 2005); P.W. Anderson, “A suggested 4 × 4 structure in underdoped cuprate superconductors: a Wigner supersolid,” preprint, cond-mat/0406038 (accessed March 2005); E. Kaneshita, I. Martin, and A.R. Bishop, “Local edge modes in doped cuprates with checkerboard polaronic heterogeneity,” preprint, cond-mat/0406042 (accessed March 2005); A.S. Alexandrov, “Checkerboard density of states in strong-coupling superconductors,” preprint, cond-mat/0407401 (accessed March 2005); L. Balents, L. Bartosch, A. Burkov, S. Sachdev, and K. Sengupta, “Putting competing orders in their place near the Mott transition,” preprint, cond-mat/0408329 (accessed March 2005); H.-X. Huang, Y.-Q. Li, and F.-C. Zhang, “Charge ordered RVB states in the doped cuprates,” preprint, condmat/ 0408504 (accessed March 2005); A. Ghosal, A. Kopp, and S. Chakravarty, “Modulation of the local density of states within the d-density wave theory in the underdoped cuprates,” preprint, cond-mat/0412241 v1 (accessed March 2005).CrossRefGoogle Scholar
22.Demler, E., Sachdev, S., and Zhang, Y., Phys. Rev. Lett. 87 067202(2001).CrossRefGoogle Scholar
23.Vershinin, M., Misra, S., Ono, S., Abe, Y., Ando, Y., and Yazdani, A., Science 303 (2004) p. 1995.CrossRefGoogle Scholar
24.Hanaguri, T., Lupien, C., Kohsaka, Y., Lee, D.-H., Azuma, M., Takano, M., Takagi, H., and Davis, J.C., Nature 430 (2004) p. 1001.CrossRefGoogle Scholar
25. Evidence has recently begun to emerge that the random distribution of dopant atoms is correlated with at least some of these phenomena. See McElroy, K., Lee, J., Slezak, J.A., Lee, D.-H., Eisaki, H., Uchida, S., and Davis, J.C., “Imaging the atomic-scale sources of superconducting disorder in Bi2Sr2CaCu2O8+™,” (2005) submitted.Google Scholar