Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-12T12:48:25.470Z Has data issue: false hasContentIssue false

Vapor Deposition of Low-Dielectric-Constant Polymeric Thin Films

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

For devices with feature sizes below 0.18 μm, it is desirable to have materials with a dielectric constant below 2.5 as interlayer dielectrics. Polymeric materials are possible candidates. There are two main strategies to grow polymeric films. The most widely used method is the spin-on technique. The other method is by vapor deposition. Although vapor deposition is less common, it has several attractive features that look quite promising, especially when the wafer size becomes very large.

There are several advantages to vapor-deposited polymers:

(1) The deposition of the polymers is a dry process. It is solvent-free and does not produce waste. No remedial measures are necessary to take care of the waste. The process is attractive from both energy-conservation and environmental considerations.

(2) They can provide an extremely uniform coating over a very large area. For 200-mm wafers, for example, one can achieve better than 2% uniformity for vapor-deposited parylene (a type of polymer to be described later) films. Similar uniformity can be expected for future 300-mm wafers.

(3) Many vapor-deposited polymers possess superior gap-filling capability. Small vias and trenches of very high aspect ratios can be filled without voids.

There are some shortcomings in vapor deposition of polymeric thin films. First of all, except for some special cases, processing issues for these materials are not well-studied. Manufacturing equipment is not well-developed.

Type
Low-Dielectric-Constant Materials
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Moore, J.A., Lang, C-I., Lu, T-M., and Yang, G-R., Polym. Mater. Sci. Eng. 72 (1995) p. 437.Google Scholar
2. Szwarc, M.J., Discuss. Faraday Soc. 2 (1957) p. 46; W.F. Gorham, U.S. Patent No. 3,342,754 (September 1967).Google Scholar
3. Wu, P.K., Yang, G-R., McDonald, J.F., and Lu, T-M., J. Electron. Mater. 24 (1995) p. 53; G-R. Yang, D. Mathur, X-M. Wu, S. Dabral, J.F. McDonald, and T-M. Lu, J. Electron. Mater. 25 (1996) p. 1778; L. You, G-R. Yang, D.B. Knorr, J.F. McDonald, and T-M. Lu, Appl. Phys. Lett. 64 (1994) p. 2812.CrossRefGoogle Scholar
4. Zhang, X., Dabral, S., Howard, B.J., Bica, J., Chiang, C., Ochoa, V., Ficalora, P., Steinbruchel, C., Bakhru, H., Lu, T-M., and McDonald, J.F., “Sub-micrometer Metallization,” SPIE, vol. 1805 (1992) p. 30.Google Scholar
5. Yang, G-R., Ganguli, S., Karcz, J., Gill, W.N., and Lu, T-M. (unpublished).Google Scholar
6. Yang, G-R., Wang, B., Lu, T-M., and McDonald, J., Proc. 2nd Int. DUMIC Conf. (1996) p. 214.Google Scholar
7. Wang, B., McDonald, J.F., Yang, G-R., Lu, T-M., Ganguli, S., Gill, W., Hu, S.L., Lai, G., Marsh, E.P., and Orr, K., Proc. 3rd Int. DUMIC (1997) p. 125.Google Scholar
8. Taylor, K.J., Eissa, M., Gaynor, J., and Nguyen, H., in Low-Dielectric Constant Materials III, edited by Case, C., Kohl, P., Kikkawa, T., and Lee, W.W. (Mater. Res. Soc. Symp. Proc. 476, Pittsburgh, 1997).Google Scholar
9. Gorham, W.F., U.S. Patent No. 3,342,754 (September 1967); S.W. Chow, L.A. Pilato, and W.L. Wheelwright, J. Org. Chem. 35 (September, 1967) p. 20.Google Scholar
10. Joesten, B.L., J. Appl. Polym. Sci. 18 (1974) p. 439.CrossRefGoogle Scholar
11. Harrus, A.S., Piano, M.A., Kumar, D., and Kelly, J., in Low-Dielectric Constant Materials II, edited by Uram, K., Treichel, H., Jones, A.C., and Lgendijk, A. (Mater. Res. Soc. Symp. Proc. 443, Pittsburgh, 1997).Google Scholar
12. Hertler, W.R., J. Org. Chem. 28 (1963) p. 2877.Google Scholar
13. You, L., Yang, G-R., Lang, C-I., Moore, J.A., Wu, P., McDonald, J.F., and Lu, T-M., in Vac. Sci. Technol. A 11 (1993) p. 3047.Google Scholar
14. You, L., Yang, G-R., Lu, T-M., Moore, J.A., and McDonald, J.F., U.S. Patent 5,268,202 (December 1993); L. You, G-R. Yang, C-I. Lang, P. Wu, J.A. Moore, J.F. McDonald, and T-M. Lu, in Chemical Perspectives of Microelectronic Materials III, edited by C.R. Abernathy, C.W. Bates, D.A. Bohling, and W.S. Hobson (Mater. Res. Soc. Proc. 282, Pittsburgh, 1993).CrossRefGoogle Scholar
15. Dolbier, W.R. Jr., Asghar, M.A., and Pan, H-Q., US. Patent 5,210,341 (1993).Google Scholar
16. John, J.A. and Tour, J.M., J. Am. Chem. Soc. 116 (1994) p. 5011.Google Scholar
17. Lang, C-I., Yang, G-R., Moore, J.A., and Lu, T-M., in Low-Dielectric Constant Materials—Synthesis and Applications in Microelectronics, edited by Lu, T-M., Murarka, S.P., Kuan, T.S., and Ting, C-H. (Mater. Res. Soc. Symp. Proc. 381, Pittsburgh, 1995) p. 45.Google Scholar
18. deWilde, W. and deMey, G., Vacuum 24 (1973) p. 307.CrossRefGoogle Scholar
19. Resnick, P.R., Polym. Prepr. 31 (1990) p. 312.Google Scholar
20. Nason, T., Moore, J.A., and Lu, T-M., Appl. Phys. Lett. 60 (1992) p. 1866.CrossRefGoogle Scholar
21. Blanchet, G.B., Appl. Phys. Lett. 62 (1993) p. 478.Google Scholar
22. Singh, R. and Sharangpani, R., Proc. 2nd Int. DUMIC Conf. (1996) p. 78.Google Scholar
23. Dabral, S., Zhang, X., Wang, B., Yang, G-R., Lu, T-M., and McDonald, J.F., in Low-Dielectric Constant Materials—Synthesis and Applications in Microelectronics, edited by Lu, T-M., Murarka, S.P., Kuan, T.S., and Ting, C.H. (Mat. Res. Soc. Symp. Proc. 381, Pittsburgh, 1995) p. 205.Google Scholar
24. Jeng, S-P., Taylor, K., Chang, M-C., Ting, L., Lee, C., McAnally, P., Seha, T., Numata, K., Tanaka, T., and Havemann, R., Low-Dielectric Constant Materials—Synthesis and Applications in Microelectronics (1995) p. 197.Google Scholar
25. Gutmann, R.J., Chow, T.P., Duquette, D.J., Lu, T-M., McDonald, J.F., and Murarka, S.P., Low-Dielectric Constant Materials—Synthesis and Applications in Microelectronics p. 177.Google Scholar