Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-24T09:50:45.702Z Has data issue: false hasContentIssue false

Toward the nanoscale study of insect physiology using an atomic force microscopy-based nanostethoscope

Published online by Cambridge University Press:  09 May 2012

I. Sokolov*
Affiliation:
Department of Physics and Nanoengineering and Biotechnology Laboratories Center, Clarkson University, Potsdam, NY; [email protected]
Get access

Abstract

Insects constitute the most diverse and populated subclass of animals, with two million species identified. They also display a vast diversity of morphological and functional adaptations that allow them to thrive in various environments, which enables them to fly, swim, or walk nearly anywhere. Insects can be regarded as highly efficient and robust bio-machines, a precious source of material and information for bioinspired miniature technological devices. Yet, to date, little study of the functionality of insects has been undertaken with modern nanotechnology tools. Atomic force microscopy (AFM) is a technique generally used to study surface properties of materials at the nanoscale. Recently it has been shown that the AFM method can be extended to study complex living organisms, cells, and even entire animals, such as insects. AFM has demonstrated the feasibility of recording surface oscillations with sub-Angstrom spatial and sub-millisecond temporal resolutions while positioning the AFM probe at different parts of an insect with nanometer precision. In effect, it enables the AFM to function as a nanostethoscope. This article describes how such a nanostethoscope can be used to study the material properties, physiological reactions, and sensing mechanisms of insects.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Westneat, M.W., Betz, O., Blob, R.W., Fezzaa, K., Cooper, W.J., Lee, W.-K., Science 299, 558 (2003).CrossRefGoogle Scholar
2.Hetz, S.K., Bradley, T.J., Nature 433, 516 (2005).CrossRefGoogle Scholar
3.Cator, L.J., Arthur, B.J., Harrington, L.C., Hoy, R.R., Science 323, 1077 (2009).CrossRefGoogle Scholar
4.Windmill, J.F., Sueur, J., Robert, D., J. Exp. Biol. 212, 4079 (2009).CrossRefGoogle Scholar
5.Jackson, J.C., Windmill, J.F., Pook, V.G., Robert, D., Proc. Natl. Acad. Sci. U.S.A. 106, 10177 (2009).CrossRefGoogle Scholar
6.Iyer, S., Gaikwad, R.M., Subba-Rao, V., Woodworth, C.D., Sokolov, I., Nat. Nanotechnol. 4, 389 (2009).CrossRefGoogle Scholar
7.Radmacher, M., Fritz, M., Hansma, H.G., Hansma, P.K., Science 265, 1577 (1994).CrossRefGoogle Scholar
8.Domke, J., Parak, W.J., George, M., Gaub, H.E., Radmacher, M., Eur. Biophys. J. Biophys. Lett. 28, 179 (1999).CrossRefGoogle Scholar
9.Szabo, B., Selmeczi, D., Kornyei, Z., Madarasz, E., Rozlosnik, N., Phys. Rev. E: Stat. Nonlinear Soft Matter Phys. 65, 041910 (2002).CrossRefGoogle Scholar
10.Maksym, G.N., Fabry, B., Butler, J.P., Navajas, D., Tschumperlin, D.J., Laporte, J.D., Fredberg, J.J., J. Appl. Physiol. 89, 1619 (2000).CrossRefGoogle Scholar
11.Pelling, A.E., Sehati, S., Gralla, E.B., Valentine, J.S., Gimzewski, J.K., Science 305, 1147 (2004).CrossRefGoogle Scholar
12.Radmacher, M., Fritz, M., Hansma, H.G., Hansma, P.K., Science 265, 1577 (1994).CrossRefGoogle Scholar
13.Dokukin, M.E., Guz, N.V., Sokolov, I., J. Insect Physiol. 57, 260 (2011).CrossRefGoogle Scholar
14.Guz, N.V., Dokukin, M.E., Sokolov, I., PLoS One 5, e12834 (2010).CrossRefGoogle Scholar
15.Dokukin, M.E., Guz, N.V., Vasilyev, S., Sokolov, I., Appl. Phys. Lett. 96, 043701 (2010).CrossRefGoogle Scholar
16.Maredia, K.M., Gage, S.H., Landis, D.A., Wirth, T.M., Biol. Control 2, 253 (1992).CrossRefGoogle Scholar
17.Briscoe, A.D., Chittka, L., Annu. Rev. Entomol. 46, 471 (2001).CrossRefGoogle Scholar
18.Mishra, M., Meyer-Rochow, V.B., Invertebrate Biol. 125, 265 (2006).CrossRefGoogle Scholar
19.Burkett, B.N., Schneiderman, H.A., Biol. Bull. 147, 274 (1974).CrossRefGoogle Scholar
20.Pelling, A.E., Wilkinson, P.R., Stringer, R., Gimzewski, J.K., J. R. Soc. Interface 6, 29 (2009).CrossRefGoogle Scholar