Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-27T22:18:00.160Z Has data issue: false hasContentIssue false

Toward integrated plasmonic circuits

Published online by Cambridge University Press:  15 August 2012

Volker J. Sorger
Affiliation:
University of California, Berkeley, CA, 94720, USA; [email protected]
Rupert F. Oulton
Affiliation:
Blackett Laboratory, Imperial College London, UK; [email protected]
Ren-Min Ma
Affiliation:
University of California, Berkeley, CA 94720, USA; [email protected]
Xiang Zhang
Affiliation:
University of California, Berkeley, CA 94720, USA; [email protected]
Get access

Abstract

Emerging telecommunication and data routing applications anticipate a photonic roadmap leading to ultra-compact photonic integrated circuits. Consequently, photonic devices will soon have to meet footprint and efficiency requirements similar to their electronic counterparts calling for extreme capabilities to create, guide, modulate, and detect deep-subwavelength optical fields. For active devices such as modulators, this means fulfilling optical switching operations within light propagation distances of just a few wavelengths. Plasmonics, or metal optics, has emerged as one potential solution for integrated on-chip circuits that can combine both high operational speeds and ultra-compact architectures rivaling electronics in both speed and critical feature sizes. This article describes the current status, challenges, and future directions of the various components required to realize plasmonic integrated circuitry.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Rattner, J., “The Future of Silicon Photonics’ Integrated Photonics Research, Silicon and Nanophotonics” (IPRSN, JTuA1, 2010).CrossRefGoogle Scholar
2.Paniccia, M., Krutul, V., Koehl, S., “Introducing Intel’s Advances in Silicon Photonics” (Intel Corporation White paper, 2004).Google Scholar
3.Welch, D.F., Kish, F.A., Nagarajan, R., Joyner, C.H., Schneider, R.P., Dominic, V.G., Mitchell, M.L., Grubb, S.G., Chiang, T.-K., Perkins, D., Nilsson, A.C., IEEE J. Lightwave Technol. 12, 4674 (2006).Google Scholar
4.Kirchain, R., Kimerling, L., Nat. Photonics 1, 303 (2007).CrossRefGoogle Scholar
5.Dionne, J.A., Diest, K., Sweatlock, L.A., Atwater, H.A., Nano Lett. 9 (2), 897 (2009).CrossRefGoogle Scholar
6.Sorger, V.J., Pholchai, N., Cubukcu, E., Oulton, R.F., Kolchin, P., Borschel, C., Gnauck, M., Ronning, C., Zhang, X., Nano Lett. 11 (11), 4907 (2011).CrossRefGoogle Scholar
7.Sorger, V.J., Lanzillotti-Kimura, N.D., Ma, R.-M., Zhang, X., Nanophotonics doi: 10.1515/nanoph-2012-0009, May 2012.Google Scholar
8.Leuthold, J., Koos, C., Freude, W., Nat. Photonics 4, 535 (2010).CrossRefGoogle Scholar
9.Witzens, J., Baehr-Jones, T., Hochberg, M., Nat. Photonics 4, 10 (2010).Google Scholar
10.Barnes, W.L., Dereux, A., Ebbesen, T.W., Nature 424, 824 (2003).CrossRefGoogle Scholar
11.Maier, S.A., Plasmonics, Fundamentals and Applications (Springer, New York, 2007).Google Scholar
12.Gramotnev, D.K., Bozhevolnyi, S.I., Nat. Photonics 4, 83 (2010).Google Scholar
13.Maier, S.A., Kik, P.G., Atwater, H.A., Meltzer, S., Harel, E., Nat. Mater. 2, 229 (2002).Google Scholar
14.Kusunoki, F., Yotsuya, T., Takahara, J., Opt. Express 14 (12), 5651 (2006).Google Scholar
15.Verhagen, E., Spasenovic, M., Polman, A., Kuipers, L., Phys. Rev. Lett. 102, 203904 (2009).CrossRefGoogle Scholar
16.Dionne, J.A., Lezec, H.J., Atwater, H.A., Nano Lett. 6 (9), 1928 (2006).Google Scholar
17.Sorger, V.J., Ye, Z., Oulton, R.F., Bartal, G., Wang, Y., Zhang, X., Nat. Commun. 2, 331 (2011).Google Scholar
18.Bozhevolnyi, S.I., Volkov, V.S., Devaux, E., Laluet, J., Ebbesen, T.W., Nature 440, 508 (2006).CrossRefGoogle Scholar
19.Jung, K.-Y., Teixeira, F.L., Reano, R.M., IEEE Photonics Technol. Lett. 21 (10), 630 (2009).CrossRefGoogle Scholar
20.Pile, D.F.P., Ogawa, T., Gramotnev, D.K., Okamoto, T., Haraguchi, M., Fukui, M., Matsuo, S., App. Phys. Lett. 87, 061106 (2005).CrossRefGoogle Scholar
21.Oulton, R.F., Bartal, G., Pile, D.F.P., Zhang, X., New J. Phys. (Plasmonics Focus Issue) 10, 105018 (2008).Google Scholar
22.Steinberger, B., Hohenau, A., Ditlbacher, H., Stepanov, A.L., Drezet, A., Aussenegg, F.R., Leitner, A., Krenn, J.R., App. Phys Lett. 88, 094104 (2006).CrossRefGoogle Scholar
23.Krasavin, A.V., Zayats, A.V., Opt. Express 18 (11), 11791 (2010).Google Scholar
24.Briggs, R.M., Grandidier, J., Burgos, S.P., Feigenbaum, E., Atwater, H.A., Nano Lett. 10 (12), 4851 (2010).CrossRefGoogle Scholar
25.Alam, M.Z., Meier, J., Aitchison, J.S., Mojahedi, M., OSA Conference on Lasers and Electro-Optics, Baltimore, MD (2007), pp. JThD112.Google Scholar
26.Oulton, R.F., Sorger, V.J., Pile, D.F.B., Genov, D., Zhang, X., Nat. Photonics 2, 496 (2008).CrossRefGoogle Scholar
27.Benisty, H., Besbes, M., J. Appl. Phys. 108, 063108 (2010).Google Scholar
28.Benisty, H., Besbes, M., J. Opt. Soc. Am. B 29, 818 (2012).Google Scholar
29.Goykhman, I., Desiatov, B., Levy, U., Appl. Phys. Lett. 97, 141106 (2010).CrossRefGoogle Scholar
30.Bogaerts, W., Baets, R., Dumon, P., Wiaux, V., Beckx, S., Taillaert, D., Luyssaert, B., Van Campenhout, J., Bienstman, P., Van Thourhout, D., J. Lightwave Technol. 23, 1 (2005).Google Scholar
31.Johnson, P.B., Christie, R.W., Phys. Rev. B 6, 4370 (1972).Google Scholar
32.Sorger, V.J., Zhang, X., Science 333, 709 (2011).Google Scholar
33.Ma, R.-M., Oulton, R.F., Sorger, V.J., Zhang, X., Laser Photonics Rev. 1 (2012).Google Scholar
34.Genov, D., Oulton, R., Bartal, G., Zhang, X., Phys. Rev. B 83, 245312 (2011).Google Scholar
35.Purcell, E.M., Phys. Rev. B 69, 681 (1946).Google Scholar
36.Stockman, M.I., J. Opt. 12 (024004), 1 (2010).Google Scholar
37.Bjork, G., Yamamoto, Y., IEEE J. Quantum Electron. 27, 2386 (1991).CrossRefGoogle Scholar
38.Oulton, R.F., Sorger, V.J., Zentgraf, T., Ma, R.M., Gladden, C., Dai, L., Bartal, G., Zhang, X., Nature 461, 629 (2009).CrossRefGoogle Scholar
39.Ma, R.M., Oulton, R.F., Sorger, V.J., Bartal, G., Zhang, X., Nat. Mater. 10, 110 (2011).CrossRefGoogle Scholar
40.Kwon, S.-H., Kang, J.-H., Seassal, C., Kim, S.-K., Regreny, P., Lee, Y.-H., Lieber, C.M., Park, H.-G., Nano Lett. 10, 3679 (2010).Google Scholar
41.Hill, M.T., Marell, M., Leong, E.S.P., Smalbrugge, B., Zhu, Y., Sun, M., Veldhoven, P.J.V., Geluk, E.J., Karouta, F., Oei, Y.S., Nötzel, R., Ning, C.-Z., Smit, M.K., Opt. Express 17, 11107 (2009).CrossRefGoogle Scholar
42.Khajavikhan, M., Simic, A., Katz, M., Lee, J.H., Slutsky, B., Mizrahi, A., Lomakin, V., Fainman, Y., Nature 482, 204 (2012).CrossRefGoogle Scholar
43.Noginov, M.A., Zhu, G., Belgrave, A.M., Bakker, R., Shalaev, V.M., Narimanov, E.E., Stout, S., Herz, E., Suteewong, T., Wiesner, U., Nature 460, 1110 (2009).Google Scholar
44.Ma, R.-M., Yin, X., Oulton, R.F., Sorger, V.J., Xiang, X., Frontiers in Optics (2011), paper PDPC7.Google Scholar
45.Ding, K., Liu, Z., Yin, L., Wang, H., Liu, R., Hill, M.T., Marell, M.J.H., van Veldhoven, P.J., Nötzel, R., Ning, C.Z., Appl. Phys. Lett. 98, 231108 (2011).Google Scholar
46.West, P.R., Ishii, S., Naik, G.V., Emani, N.K., Shalaev, V.M., Boltasseva, A., Laser Photonics Rev. 4, 795 (2010).CrossRefGoogle Scholar
47.Naik, G.V., Kim, J., Boltasseva, A., Opt. Mater. Express 1, 1090 (2011).CrossRefGoogle Scholar
48.Boltasseva, A., Atwater, H.A., Science 331, 290 (2011).Google Scholar
49.Ho, J.C., Yerushalmi, R., Jacobson, Z.A., Fan, Z., Alley, R.L., Javey, A., Nat. Mater. 7 (1), 62 (2008).Google Scholar
50.Ho, J.C., Yerushalmi, R., Smith, G., Majhi, P., Bennett, J., Halim, J., Faifer, V., Javey, A., Nano Lett. 9 (2), 725 (2009).Google Scholar
51.Chau, R., Datta, S., Doczy, M., Doyle, B., Jin, B., Kavalieros, J., Majumdar, A., Metz, M., Radosavljevic, M., IEEE Trans. Nanotechnol. 4, 2 (2005).Google Scholar
52.Miller, D.A.B., Nat. Photonics 4, 3 (2010).Google Scholar
53.Okyay, A.K., Pethe, A.J., Kuzum, D., Latif, S., Miller, D.A.B., Saraswat, K.C., Opt. Lett. 32, 14 (2007).Google Scholar
54.Sasaki, K., Sasaki, S., Furukawa, O., MRS Proc. 247 (1992).Google Scholar
55.Hochberg, M., Baehr-Jones, T., Wang, G., Shearn, M., Harvard, K., Luo, J., Chen, B., Shi, Z., Lawson, R., Sullivan, P., Jen, A.K.Y., Dalton, L., Scherer, A., Nat. Mater. 5, 703 (2006).CrossRefGoogle Scholar
56.Dawlaty, J.M., Rana, F., Schaff, W.J., Mater. Res. Soc. 831, E7.3.1 (2011).Google Scholar
57.Sincerbox, G.T., Gordon, J.C., Appl. Opt. 20, 1491 (1981).Google Scholar
58.Schildkraut, J.S., Appl. Opt. 27 (21), 4587 (1988).CrossRefGoogle Scholar
59.Solgaard, O., Ho, F., Thackara, J.I., Bloom, D.M., Appl. Phys. Lett. 61 (21), 2500 (1992).Google Scholar
60.Jung, C., Yee, S., Kuhn, K., Appl. Opt. 34, 946 (1995).Google Scholar
61.Taylor, H.F., Taylor, M.J., Bauer, P.W., Appl. Phys. Lett. 32, 559 (1972).Google Scholar
62.Liu, A., Jones, R., Liao, L., Samara-Rubio, D., Rubin, D., Cohen, O., Nicolaescu, R., Paniccia, M., Nature 427, 615 (2004).CrossRefGoogle Scholar
63.Xu, Q., Schmidt, B., Pradhan, S., Lipson, M., Nature 435, 325 (2005).Google Scholar
64.Green, W.M.J., Rooks, M.J., Sekaric, L., Vlasov, Y.A., Opt. Express 15 (25), 17106 (2007).Google Scholar
65.Reed, G.T., Mashanovich, G., Gardes, F.Y., Thomson, D.J., Nat. Photonics 4, 518 (2010).Google Scholar
66.Tian, Y., Chen, C.-Y., Haller, M.A., Tucker, N.M., Ka, J.-W., Luo, J., Huang, S., Jen, A.K.-Y., Macromolecules 40, 97 (2007).CrossRefGoogle Scholar
67.Liu, M., Bin, X., Avila, E., Zentgraf, T., Ju, L., Wang, F., and Zhang, X., Nature 474, 64 (2011).Google Scholar
68.Gordon, R.G., MRS Bull. 25 (8), 52 (2000).CrossRefGoogle Scholar
69.Hamberg, I., Granqvist, C.G., J. Appl. Phys. 123 (2000).Google Scholar
70.Feigenbaum, E., Diest, K., Atwater, H.A., Nano Lett. 10, 2111 (2010).CrossRefGoogle Scholar
71.Cai, W., White, J.S., Brongersma, M.L., Nano Lett. 9, 4403 (2009).CrossRefGoogle Scholar
72.MacDonald, K.F., Sámson, Z.L., Stockman, M.I., Zheludev, N.I., Nat. Photonics 3, 55 (2009).CrossRefGoogle Scholar
73.Sorger, V.J., Oulton, R.F., Yao, J., Bartal, G., Zhang, X., Nano Lett. 9, 3489 (2009).Google Scholar
74.Kaminow, I.P., Doerr, C.R., Dragone, C., Koch, T., Koren, U., Saleh, A.A.M., Kirby, A.J., Ozveren, C.M., Schofield, B., Thomas, R.E., Barry, R.A., Castagnozzi, D.M., Chan, V.W.S., Hemenway, B.R., Marquis, D., Parikh, S.A., Stevens, M.L., Swanson, E.A., Finn, S.G., Gallager, R.G., IEEE J. Sel. Top. Commun. 14, 780 (1996).CrossRefGoogle Scholar
75.Miller, D.A.B., Proc. IEEE 97, 1166 (2009).Google Scholar
76.Mallick, S.B., Sergeant, N.P., Agrawal, M., Lee, J.-Y., Peumans, P., MRS Bull. 36 (6), 453 (2011).Google Scholar
77.Callahan, D.M., Munday, J.N., Atwater, H.A., Nano Lett. 12, 214 (2011).Google Scholar
78.Tang, L., Miller, D.A.B., Okyay, A.K., Matteo, J.A., Yuen, Y., Saraswat, K.C., Hesselink, L., Opt. Lett. 31, 1519 (2006).Google Scholar
79.Tang, L., Latif, S., Miller, D.A.B., Electron. Lett. 45, 706 (2009).Google Scholar
80.Tang, L., Kocabas, S.E., Latif, S., Okyay, A.K., Ly-Gagnon, D.-S., Saraswat, K.C., Miller, D.A.B., Nat. Photonics 2, 226 (2008).Google Scholar
81.Knight, M.W., Sobhani, H., Nordlander, P., Halas, N.J., Science 332, 701 (2011).CrossRefGoogle Scholar
82.Ly-Gagnon, D.-S., Balram, K.C., White, J.C., Wahl, P., Brongersma, M.L., Miller, D.A.B., Nanophotonics; doi:10.1515/nanoph-2012-0002 (2012).Google Scholar
83.Gu, M., Bai, P., Li, E.-P., IEEE Photonics Technol. Lett. 22, 4 (2010).CrossRefGoogle Scholar
84.Hsu, B.-C., Chang, S.T., Chen, T.-C., Kuo, P.-S., Chen, P.S., Pei, Z., Li, C.W., IEEE Electron Device Lett. 24 (5), 318 (2003).Google Scholar
85.Konstantatos, G., Badioli, M., Gaudreau, L., Osmond, J., Bernechea, M., Garcia de Arquer, P., Gatti, F., Koppens, F.H.L., in press (available athttp://arxiv.org/abs/1112.4730v1).Google Scholar
86.Falk, A.L., Koppens, F.H.L., Yu, C., Kang, K., de Leon Snapp, N.P., Akimov, A.V., Jo, M-.H., Lukin, M.D., Park, H., Nat. Phys. 5, 475 (2009).Google Scholar
87.Assefa, S., Xia, F., Vlasov, Y.A., Nature 464, 80 (2010).CrossRefGoogle Scholar
88.Kang, Y., Liu, H.-D., Morse, M., Paniccia, M.J., Zadka, M., Litski, S., Sarid, G., Pauchard, A., Kuo, Y.-H., Chen, H.-W., Zaoui, W.S., Bowers, J.E., Beling, A., McIntosh, D.C., Zheng, X., Campbell, J.C., Nat. Photonics 3, 59 (2009).Google Scholar
89.Cisco Visual Networking Index, Forecast and Methodology, 2010–2015.Google Scholar
90.Markoff, J., “Data Centers’ Power Use Less Than Was Expected,” New York Times (July 31, 2011).Google Scholar
91.Yablonovitch, E., 1st Berkeley Symposium on Energy Efficient Electronic Systems (2009).Google Scholar
92.“The 50G Silicon Photonics Link” (Intel Silicon Photonics white paper, July 2010).Google Scholar
93.Jalali, B., Fathpour, S., Tsia, K., Optics and Photonics News (2009).Google Scholar