Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-24T08:45:42.010Z Has data issue: false hasContentIssue false

Tissue Engineering of Bone by Osteoinductive Biomaterials

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

Recent advances in materials science and biotechnology have given birth to the new and exciting field of tissue engineering, in which the two normally disparate fields are merging into a profitable matrimony. In particular the use of biomaterials capable of initiating new bone formation via a process called osteoinduction is leading to quantum leaps for the tissue engineering of bone.

The classic work of Marshall R. Urist and A. Hari Reddi opened the field of osteoinductive biomaterials. Urist discovered that, upon implantation of devitalized, demineralized bone matrix in the muscle of experimental animals, new bone formation occurs within two weeks, a phenomenon he described as bone formation by induction. The tissue response elicited by implantation of demineralized bone matrix in muscle or under the skin includes activation and migration of undifferentiated mesenchymal cells by chemotaxis, anchoragedependent cell attachment to the matrix, mitosis and proliferation of mesenchymal cells, differentiation of cartilage, mineralization of the cartilage, vascular invasion of the cartilage, differentiation of osteoblasts and deposition of bone matrix, and finally mineralization of bone and differentiation of marrow in the newly developed ossicle.

The osteoinductive ability of the extracellular matrix of bone is abolished by the dissociative extraction of the demineralized matrix, but is recovered when the extracted component, itself inactive, is reconstituted with the inactive residue—mainly insoluble collagenous bone matrix. This important experiment showed that the osteoinductive signal resides in the solubilized component but needs to be reconstituted with an appropriate carrier to restore the osteoinductive activity. In this case, the carrier is the insoluble collagenous bone matrix—mainly crosslinked type I collagen.

Type
Tissue Engineering
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Langer, R. and Vacanti, J.P., Science 260 (1993) p. 920.CrossRefGoogle Scholar
2.Urist, M.R., Science 159 (1965) p. 893.CrossRefGoogle Scholar
3.Reddi, A.H. and Huggins, C.B., Proc. Natl. Acad. Sci. USA 69 (1972) p. 1601.CrossRefGoogle Scholar
4.Reddi, A.H., Collagen Rel. Res. 1 (1981) p. 209.CrossRefGoogle Scholar
5.Sampath, T.K. and Reddi, A.H., Proc. Natl. Acad. Sci. USA 78 (1981) p. 7599.CrossRefGoogle Scholar
6.Khouri, R.K., Koudsi, B. and Reddi, A.H., J. Am. Med. Assoc. (JAMA) 266 (1991) p. 1953.CrossRefGoogle Scholar
7.Wozney, J.M., Rosen, V., Celeste, A.J., Mitsock, L.M., Whitters, M.J., Kriz, R.W., Hewick, R.M., and Wang, E.A., Science 242 (1988) p. 1528.CrossRefGoogle Scholar
8.Luyten, P.F., Cunningham, N.S., Ma, S., Muthukumaran, N., Hammonds, R.G., Nevins, W.B., Wood, W.I., and Reddi, A.H., J. Biol. Chem. 264 (1989) p. 13377.CrossRefGoogle Scholar
9.Celeste, A.J., Iannazzi, J.M., Taylor, A.J., Hewick, R.C., Rosen, V., Wang, E.A., and Wozney, J.M., Proc. Natl. Acad. Sci. USA 87 (1990) p. 9843.CrossRefGoogle Scholar
10.Özkaynak, E., Rueger, D.C., Drier, E.A., Corbett, C., Ridge, R.J., Sampath, T.K., and Oppermann, H., EMBO (Eur. Mol. Biol. Organ.) J. 9 (1990) p. 2085.CrossRefGoogle Scholar
11.Özkaynak, E., Schnegelsberg, P.N.J., Jin, D.F., Clifford, G.M., Warren, F.D., Drier, E.A., and Oppermann, H., J. Biol. Chem. 267 (1992) p. 25220.CrossRefGoogle Scholar
12.Wozney, J.M., Molec. Rep. Dev. 32 (1992) p. 160.CrossRefGoogle Scholar
13.Reddi, A.H., Curr. Opin. Cell Biol. 4 (1992) p. 850.CrossRefGoogle Scholar
14.Reddi, A.H., Curr. Opin. Gen. Dev. 4 (1994) p. 737.CrossRefGoogle Scholar
15.Ripamonti, U. and Vukicevic, S., Afr, S.. J. Sci. 91 (1995) p. 277.Google Scholar
16.Kessler, E., Takahara, K., Biniaminov, L., Brusel, M., and Greenspan, D.S., Science 271 (1996) p. 360.CrossRefGoogle Scholar
17.Cook, S.D., Wolfe, M.W., Salkeld, S.L., and Rueger, D.C., J. Bone Joint Surg. 77A (1995) p. 734.CrossRefGoogle Scholar
18.Ripamonti, U., Ma, S., Cunningham, N., Yeates, L., and Reddi, A.H., Matrix 12 (1992) p. 369.CrossRefGoogle Scholar
19.Ripamonti, U., van den Heever, B., Tucker, M., Sampath, T.K., Rueger, D., and Reddi, A.H., Growth Factors 13 (1996) p. 1.CrossRefGoogle Scholar
20.Jarcho, M., Clin. Orthop. 157 (1981) p. 259.CrossRefGoogle Scholar
21.Hench, L.L. and Wilson, J., Science 226 (1984) p. 630.CrossRefGoogle Scholar
22.Paralkar, V.M., Nandedkar, A.K.N., Pointer, R.H., Kleinman, H.K., and Reddi, A.H., J. Biol. Chem. 265 (1990) p. 17281.CrossRefGoogle Scholar
23.Sampath, T.K. and Reddi, A.H., Biochem. Biophys. Res. Commun. 119 (1984) p. 949.CrossRefGoogle Scholar
24.Ripamonti, U., Yeates, L., and van den Heever, B., Biochem. Biophys. Res. Commun. 193 (1993) p. 509.CrossRefGoogle Scholar
25.Ripamonti, U., Ma, S., van den Heever, B., and Reddi, A.H., Plast. Reconstr. Surg. 90 (1992) p. 382.CrossRefGoogle Scholar
26.Takaoka, K., Nakahara, H., Yoshikawa, H., Masuhara, K., Tsuda, T., and Ono, K., Plast. Reconstr. Surg. 90 234 (1988), p. 250.Google Scholar
27.Ono, I., Gunji, H., Kaneko, F., Saito, T., and Kuboki, Y., J. Craniofac. Surg. 6 (1995) p. 238.CrossRefGoogle Scholar
28.Ripamonti, U., J. Bone Joint Surg. 73A (1991) p. 692.CrossRefGoogle Scholar
29.Ripamonti, U., van den Heever, B., and van Wyk, J., Matrix 13 (1993) p. 491.CrossRefGoogle Scholar
30.Ripamonti, U., Biomateriais 17 (1996) p. 31.CrossRefGoogle Scholar
31.van Eeden, S. and Ripamonti, U., Plast. Reconstr. Surg. 93 (1994) p. 959.CrossRefGoogle Scholar
32.Ripamonti, U., Ma, S., and Reddi, A.H., Matrix 12 (1992) p. 202.CrossRefGoogle Scholar
33.Reddi, A.H., Adv. Biol. Med. Phys. 15 (1974) p. 1.CrossRefGoogle Scholar
34.Sampath, T.K. and Reddi, A.H., J. Cell Biol. 98 (1984) p. 2192.CrossRefGoogle Scholar
35.Ripamonti, U. and Kirkbride, A.N., Proc. 12th European Conf. Biomateriais (1995).Google Scholar
36.Vukicevic, S., Latin, V., Chen, P., Batorsky, R., Reddi, A.H., and Sampath, T.K., Biochem. Biophys. Res. Commun. 198 (1994) p. 693.CrossRefGoogle Scholar
37.Kingsley, D.M., Bland, A.E., Grubber, J.M., Marker, P.C., Russell, L.B., Copeland, N.G., and Jenkins, N.A., Cell 71 (1992) p. 399.CrossRefGoogle Scholar
38.Storm, E.E., Huynh, T.V., Copeland, N.G., Jenkins, N.A., Kingsley, D.M., and Lee, S.J., Nature 368 (1994) p. 639.CrossRefGoogle Scholar
39.Rutherford, R.B., Wahle, J., Tucker, M., Rueger, D., and Charette, M., Archs. Oral Biol. 38 (1993) p. 571.CrossRefGoogle Scholar
40.Nakashima, M., J. Dent. Res. 73 (1994) p. 1515.CrossRefGoogle Scholar
41.Ripamonti, U., Heliotis, M., Sampath, T.K., and Rueger, D.C., Archs. Oral Biol. 41 (1996) p. 121.CrossRefGoogle Scholar