Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-24T03:32:49.707Z Has data issue: false hasContentIssue false

Three-Dimensional Network-Structured Cyanide-Based Magnets

Published online by Cambridge University Press:  31 January 2011

Get access

Extract

Magnets based on metal oxides have been important for hundreds of years. Magnetite, Fe3O4, Co-doped γ-Fe2O3, and CrO2 are important examples. The oxide (O2-) bridge between the magnetic metal ions has filled p orbitals (Figure 1a) that provide the pathway for strong spin coupling. Albeit with twice as many atoms, cyanide (C≡N) can bridge between two metal ions via its pair of empty antibonding orbitals (Figure 1b) and filled nonbonding orbitals. Even prior to a detailed understanding of either their composition or structure, magnetic ordering of several cyanide complexes, although at low temperature, was noted. The differing atoms at each end of the cyanide ion have different binding affinities to metal ions, and simple coordination compounds, for example, [FeII(CN)6]2− (ferrocyanide), with alkali cations can easily be made. Replacement of the alkali cations with transition-metal cations affords insoluble materials, for example FeIII4[FeII(CN)6]3 (Prussian blue). Prussian blue has been used as a pigment and as an electrochromic and electrocatalyst material. The structure of Prussian blue was elucidated to be cubic (isotropic) with ⟶FeII⟵C≡N⟶FeIII⟵N≡C⟶FeII⟵ linkages along all three crystallographic directions (Figure 2). The FeII … FeIII separation is ∼5 Å. However, based on the composition, this is an idealized structure, as one FeII site per unit cell is missing. Water fills the vacant sites as well as the channels present in the structure. Due to the structural defects, it has been a challenge to grow single crystals.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Bozorth, R.M., Williams, H.J., and Walsh, D.E., Phys. Rev. 103 (1956) p. 572; A.N. Holden, B.T. Matthias, P.W. Anderson, and H.W. Lewis, Phys. Rev. 102 (1956) p. 1463.CrossRefGoogle Scholar
2.Itaya, K., Uchida, I., and Neff, V.D., Acc. Chem. Res. 19 (1986) p. 162.CrossRefGoogle Scholar
3.Herren, F., Fischer, P., Ludi, A., and Hälg, W., Inorg. Chem. 19 (1980) p. 956.CrossRefGoogle Scholar
4.Verdaguer, M., Bluezen, A., Train, C., Garde, R., Fabrizi de Biani, F., and Desplanches, C., Philos. Trans. Soc. London, Ser. A 357 (1999) p. 2959; M. Verdaguer, A. Bluezen, V. Marvaud, J. Waissermann, M. Seuleimann, C. Desplanches, A. Scuiller, C. Train, R. Garde, G. Gelly, C. Lomenech, I. Rosenman, P. Veillet, C. Cartier, and F. Villain, Coord. Chem. Rev. 190–192 (1999) p. 1023; W.R. Entley, C.R. Treadway, and G.S. Girolami, Mol. Cryst. Liq. Cryst. 273 (1995) p. 153.CrossRefGoogle Scholar
5.Ohkoshi, S., Iyoda, T., Fujishima, A., and Hashimoto, K., Phys. Rev. 56 (1997) p. 11642.CrossRefGoogle Scholar
6.Ferlay, S., Mallah, T., Ouahes, R., Veillet, P., and Verdaguer, M., Nature 378 (1995) p. 701; E. Dujardin, S. Ferlay, X. Phan, C. Desplanches, C.C.D. Moulin, P. Sainctavit, F. Baudelet, E. Dartyge, P. Veillet, and M. Verdaguer, J. Am. Chem. Soc. 120 (1998) p. 11347; S. Ferlay, T. Mallah, R. Ouahes, P. Veillet, and M. Verdaguer, Inorg. Chem. 38 (1999) p. 229.CrossRefGoogle Scholar
7.Hatlevik, Ø., Buschmann, W.E., Zhang, J., Manson, J.L., and Miller, J.S., Adv. Mater. 11 (1999) p. 914.3.0.CO;2-T>CrossRefGoogle Scholar
8.Holmes, S.D. and Girolami, G.S., J. Am. Chem. Soc. 121 (1999) p. 5593.CrossRefGoogle Scholar
9.Ohkoshi, S., Fujishima, A., and Hashimoto, K., J. Am. Chem. Soc. 120 (1998) p. 5349.CrossRefGoogle Scholar
10.Ohkoshi, S., Abe, Y., Fujishima, A., and Hashimoto, K., Phys. Rev. Lett. 82 (1999) p. 1285.CrossRefGoogle Scholar
11.Sato, O., Iyoda, T., Fujishima, A., and Hashimoto, K., Science 271 (1996) p. 49.CrossRefGoogle Scholar
12.Buschmann, W.E., Paulson, S.C., Wynn, C.M., Girtu, M., Epstein, A.J., White, H.S., and Miller, J.S., Chem. Mater. 10 (1998) p. 1386.CrossRefGoogle Scholar
13.Sato, O., Einaga, Y., Iyoda, T., Fujishima, A., and Hashimoto, K., J. Electrochem. Soc. 144 (1997) p. L11; Y. Einaga, O. Sato, S. Ohkoshi, A. Fujishima, and K. Hashimoto, Chem. Lett. (1998) p. 585.CrossRefGoogle Scholar
14.Pejakovic, D.A., Manson, J.L., Miller, J.S., and Epstein, A.J., J. Appl. Phys. 87 (2000) p. 6028.CrossRefGoogle Scholar
15.Ohkoshi, S. and Hashimoto, K., J. Am. Chem. Soc. 121 (1999) p. 10591.CrossRefGoogle Scholar
16.Kahn, O., Loarionova, J., and Ouahab, L., Chem. Commun. (1999) p. 945.Google Scholar
17.Garde, R., Desplanches, C., Bluezen, A., Veillet, P., and Verdaguer, M., Mol. Cryst. Liq. Cryst. 334 (1999) p. 587.CrossRefGoogle Scholar
18.Holmes, S.D. and Girolami, G.S., Mol. Cryst. Liq. Cryst. 305 (1997) p. 287.CrossRefGoogle Scholar
19.Marshall, S.R., Bendix, J., and Miller, J.S. (unpublished).Google Scholar
20.Gu, Z.-Z., Sato, O., Iyoda, T., Hashimoto, K., and Fujishima, A., Chem. Mater. 9 (1997) p. 1092.CrossRefGoogle Scholar