Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-13T01:04:39.836Z Has data issue: false hasContentIssue false

Thin Polycrystalline Silicon Solar Cells

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

Solar cells formed with thin silicon active layers (<100 μm thick) offer advantages over thick ingot-based devices. The advantages come in two forms: the first is the potential for higher conversion efficiency than that of conventional thick devices, and the second is a reduction in material requirements. The use of thin polycrystalline silicon for solar cells offers the potential of capturing the high performance of crystalline silicon while achieving the potential low cost of thin films. Experimental and theoretical studies initially uncovered the issues of grain size and thickness as limiting factors. Subsequent work added the issue of back-surface passivation. This article addresses the conditions required for the successful development of polycrystalline silicon into a high efficiency, low-cost, terrestrial product.

Type
Materials for Photovoltaics
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Culik, J. and Grimes, K., Proc. 17th IEEE PVSC, Kissimmee, Florida, 1984, p. 1137.Google Scholar
2.Sopori, B.L., J. Cryst. Growth 82 1987 p. 228.CrossRefGoogle Scholar
3.Feldman, C., Blum, N.A., Charles, H.K. Jr., and Satkiewicz, F.G., J. Elec. Mater. 7 (1978) p. 309.CrossRefGoogle Scholar
4.Hopkins, R.H., J. Cryst. Growth 82 (1987) p. 142.CrossRefGoogle Scholar
5.Ciszek, T.F., J. Appl. Phys. 47 (1976) p. 440.CrossRefGoogle Scholar
6.Ciszek, T.F. and Schwuttke, G.H., Phys. Status Solidi A27 (1975) p. 231.CrossRefGoogle Scholar
7.Ettouney, H.M. and Kalejs, J.P., J. Cryst. Growth 82 (1987) p. 17.CrossRefGoogle Scholar
8.Gurtler, R.W., J. Cryst. Growth 50 (1980) p. 69.CrossRefGoogle Scholar
9.Chalmers, B., Proc. Flat-Plate Solar Array Proj. Research Forum on the High Speed Growth and Characterization of Crystals for Solar Cells, Port Lucie, Florida, July, 1983 (JPL Public. 84-23, April, 1984) p. 15.Google Scholar
10.Dillon, O.W. and Tsai, C.T., J. Cryst. Growth 82 (1987) p. 50.CrossRefGoogle Scholar
11.Bates, H.E. and Jewett, D.N., Proc. 15th IEEE PVSC, Orlando, Florida, May 1981, p. 255.Google Scholar
12.Helmreich, D. and Geissler, J., Proc. 5th European Communities PVSEC, Athens, Greece, October 1983, p. 955.Google Scholar
13.Falckenberg, R., Grabmaier, J.G., and Hoyler, G., Proc. 6th EC PVSEC, London, England, April 1985, p. 980.Google Scholar
14.Hide, I., Yokoyama, T., Matsuyama, T., Suzuki, M., and Maeda, Y., Proc. 20th IEEE PVSC, Las Vegas, Nevada, September 1988, p. 1400.Google Scholar
15.Lange, H. and Schwirtlich, I.A., J. Cryst. Growth 104 (1990) p. 108.CrossRefGoogle Scholar
16.Jewett, D.N., Bates, H.E., and Locher, J.W., Proc. 16th IEEE PVSC, San Diego, California, September 1982, p. 86.Google Scholar
17.Beck, A., Geissler, J., and Helmreich, D., Proc. 21 IEEE PVSC, Orlando, Florida, May 1990, p. 600.Google Scholar
18.Seager, C.H., Ginley, D.S., and Zook, J.D., Appl. Phys. Lett. 36 (1980) p. 831.CrossRefGoogle Scholar
19.Martinuzzi, S., Technical Digest, Second Sunshine Workshop in Solar Cells, Shizuoka, Japan, November 1990, p. 49.Google Scholar
20.Sopori, B.L., Zhou, T.Q., and Rozgonyi, G.A., Proc. 21st IEEE PVSC, Orlando, Florida, May 1990, p. 644.Google Scholar
21.Basore, P.A., IEEE Trans. Electron Devices 37 (2) (1990) p. 337.CrossRefGoogle Scholar
22.Baliga, B.J., J. Electrochem. Soc. (January 1986) p. 5c.Google Scholar
23.Possin, G.E., Solid-State Electron. 27 (2) (1984) p. 167.CrossRefGoogle Scholar
24.Mauk, M. and Barnett, A., The Conf. Record 18th IEEE PVSC, Las Vegas, Nevada, 1985, p. 192.Google Scholar
25.Blakers, A.W., Werner, J.H., Bauser, E., and Queisser, H.J., Appl. Phys. Lett. 60 (1992) p. 2752.CrossRefGoogle Scholar
26.Kolodinski, S., Werner, J.H., Rau, U., Arch, J.K., and Bauser, E., Proc. 11th EC PVSEC, Montreux, Switzerland, October 1992, p. 53.Google Scholar
27.Shi, Z., Young, T.L., and Green, M.A., Mater. Lett. 12 (1991) p. 339.Google Scholar
28.Ciszek, T.F., Wang, T.H., Burrows, R.W., and Wu, X., Proc. 11th EC PVSEC, Montreux, Switzerland, October 1992, p. 423.Google Scholar
29.Ghitani, H. El and Martinuzzi, S., Proc. 8th EC PVSEC, Florence, Italy, 1988, p. 1364.Google Scholar
30.Hogan, S., Schuyler, T., and Ciszek, T.F., Proc. 17th IEEE PVSC, Kissimmee, Florida, 1984, p. 574.Google Scholar
31.Ghosh, A.K., Fishman, C., and Feng, T., J. Appl. Phys. 51 (1) (1980) p. 446.CrossRefGoogle Scholar
32.Jain, S.C., Proc. 2nd EC PVSEC, Berlin, Germany, 1979, p. 432.Google Scholar
33.Card, H.C. and Yang, E.S., IEEE Trans. Electron Devices ED–34 (4) 1977 p. 397.CrossRefGoogle Scholar
34.Lanza, C. and Hovel, H.J., IEEE Trans. Electron Devices ED-27 (11) (1980) p. 2085.CrossRefGoogle Scholar
35.Rothwarf, A., Proc. 12th IEEE PVSC, Baton Rouge, Louisiana, 1976, p. 488.Google Scholar
36.Seto, J.Y.W., J. Appl. Phys. 46 (12) (1975) p. 5247.CrossRefGoogle Scholar
37.Fripp, A.L., J. Appl. Phys. 46 (3) (1975) p. 1240.CrossRefGoogle Scholar
38.Seager, C.H. and Castner, T.G., J. Appl. Phys. 49 (7) (1978) p. 3879.CrossRefGoogle Scholar
39.Rock, M.L., Cunningham, D.W., Kendall, C.L., Hall, R.B., and Barnett, A.M., Proc. 21st IEEE PVSC, Orlando, Florida, May 1990, p. 634.Google Scholar
40.Rand, J.A., Cotter, J.E., Ingram, A.E., Ruffins, T.R., Shreve, K.P., Hall, R.B., and Barnett, A.M., Proc. 23rd IEEE PVSC, Louisville, Kentucky, May 1993, to be published.Google Scholar