Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-30T19:55:04.207Z Has data issue: false hasContentIssue false

Thermodynamics and Kinetics of Bulk Metallic Glass

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

Bulk metallic glasses (BMGs) are multicomponent alloys with typically three to five components with large atomic size mismatch and a composition close to a deep eutectic. Packing in BMG liquids is very dense, with a low content of free volume resulting in viscosities that are several orders of magnitude higher than in pure metal melts. The dense packing accomplished by structural and chemical atomic ordering also brings the BMG-forming liquid energetically and entropically closer to its corresponding crystalline state. These factors lead to slow crystallization kinetics and consequentially to high glass-forming ability. This article highlights the thermodynamic and kinetic properties of BMGs and their contributions to extraordinarily high glass-forming ability. Some possible links with mechanical properties are also suggested.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Wilde, G., Görler, G.P., Willnecker, R., Dietz, G., Appl. Phys. Lett. 65 (4), 397 (1994).CrossRefGoogle Scholar
2.Busch, R., Kim, Y.J., Johnson, W.L., J. Appl. Phys. 77, 4039 (1995).CrossRefGoogle Scholar
3.Geyer, U., Schneider, S., Johnson, W.L., Qiu, Y., Tombrello, T.A., Macht, M.P., Phys. Rev. Lett. 75, 2364 (1995).CrossRefGoogle Scholar
4.Wenwer, F., Knorr, K., Macht, M.P., Mehrer, H., Def. Diff. Forum 143147, 831 (1997).Google Scholar
5.Ehmler, H., Heesemann, A., Rätzke, K., Faupel, F., Geyer, U., Phys. Rev. Lett. 80, 4919 (1998).CrossRefGoogle Scholar
6.Bakke, E., Busch, R., Johnson, W.L., Appl. Phys. Lett. 67, 3260 (1995).CrossRefGoogle Scholar
7.Busch, R., Bakke, E., Johnson, W.L., Acta Mater. 46, 4725 (1998).CrossRefGoogle Scholar
8.Way, C., Wadhwa, P., Busch, R., Acta Mater. (2007) in press.Google Scholar
9.Li, L.L., Schroers, J., Wu, Y., Phys. Rev. Lett. 91 (26), 265502 (2003).CrossRefGoogle Scholar
10.Busch, R., Kim, Y.J., Johnson, W.L., Rulison, A.J., Rhim, W.K., Isheim, D., Appl. Phys. Lett. 66 (23), 3111 (1995).CrossRefGoogle Scholar
11.Kim, Y.J., Busch, R., Johnson, W.L., Rulison, A.J., Rhim, W.K., Appl. Phys Lett. 68, 1057 (1996).CrossRefGoogle Scholar
12.Schroers, J., Wu, Y., Busch, R., Johnson, W.L., Acta Mater. 49, 2773 (2001).CrossRefGoogle Scholar
13.Masuhr, A., Waniuk, T.A., Busch, R., Johnson, W.L., Phys. Rev. Lett. 82, 2290 (1999).CrossRefGoogle Scholar
14.Busch, R., Johnson, W.L., Appl. Phys. Lett. 72 (21), 2695 (1998).CrossRefGoogle Scholar
15.Busch, R., Liu, W., Johnson, W.L., J. Appl. Phys. 83, 4134 (1998).CrossRefGoogle Scholar
16.Lu, I.R., Wilde, G., Görler, G.P., Willnecker, R., J. Non-Cryst. Solids 252, 577 (1999); I.R. Lu, G. Wilde, G.P. Görler, R. Willnecker, Appl. Phys. 87, 7242 (2000).CrossRefGoogle Scholar
17.Legg, B.A., Schroers, J., Busch, R., Acta Mater. 55, 1109 (2007).CrossRefGoogle Scholar
18.Glade, S.C., Busch, R., Lee, D.S., Johnson, W.L., Wunderlich, R.K., Fecht, H.J., J. Appl. Phys. 87 (10), 7242 (2000).CrossRefGoogle Scholar
19.Ohsaka, K., Chung, S.K., Rhim, W.K., Peker, A., Scruggs, D., Johnson, W.L., Appl. Phys. Lett. 70, 726 (1997).CrossRefGoogle Scholar
20.Angell, C.A., Science 267, 1924 (1995).CrossRefGoogle Scholar
21.Iida, T., Guthrie, R.I.L., The Physical Properties of Liquid Metals (Claredon, Oxford, 1988).Google Scholar
22.Busch, R., JOM 52, 39 (2000).CrossRefGoogle Scholar
23.Shadowspeaker, L., Busch, R., Appl. Phys. Lett. 85 (13), 2508 (2004).CrossRefGoogle Scholar
24.Mukherjee, S., Schroers, J., Rhim, W.K., Johnson, W.L., Phys. Rev. Lett. 92, 245501 (2005).CrossRefGoogle Scholar
25.Adams, G., Gibbs, J.H., J. Chem. Phys. 43, 139 (1965).CrossRefGoogle Scholar
26.Moynihan, Angell, C.A., Nature 398, 492 (1999).Google Scholar
27.Tanaka, H., Phys. Rev. Lett. 90 (5), 055701 (2003).CrossRefGoogle Scholar
28.Novikov, V.N., Sokolov, A.P., Nature 432, 961 (2004).CrossRefGoogle Scholar
29.Wang, W.H., J. Appl. Phys. 99, 093506 (2006).CrossRefGoogle Scholar
30.Novikov, V.N., Sokolov, A.P., Phys. Rev. B 74, 064203 (2006).CrossRefGoogle Scholar
31.Yannopoulos, S.N., Johari, G.P., Nature 442 (7102), E7 (August 3, 2006).CrossRefGoogle Scholar
32.Schroers, J., Johnson, W.L., Phys. Rev. Lett. 93, 255506 (2004).CrossRefGoogle Scholar
33.Lewandowski, J.J., Wang, W.H., Greer, A.L., Philos. Mag. Lett. 85, 77 (2005).CrossRefGoogle Scholar
34.Zhang, Y., Greer, A.L., J. Alloys Compd. 434435, 2 (2007).Google Scholar
35.Lee, M.C. et al., Mater. Sci. Eng. 89, 301 (1988).CrossRefGoogle Scholar
36.Busch, R., diploma thesis, University of Göttingen (1988).Google Scholar
37.Waniuk, T.A., Busch, R., Masuhr, A., Johnson, W.L., Acta Mater. 46, 5229 (1998).CrossRefGoogle Scholar